/M%U:@Qﬁ&?&iﬁ

2 BB

BEAXRFHEINS R SETERRAFRE 2021 RELTHRE
2023F10°3

-

BRI R—E&R E

O

\

HA
NES R ZF BAHZEEN
ID:\-I'-I_ Z;Q_ISE;E
Ti% 3 O
13 X TRPE RE AL HEER L E) (&Rt)
A)
B3IE

gdl: fyz@mail.nankai

Wechat: nkufyz

.exn
: N

-

: ngyaozheng.com%O

e 331l

=1

HElFIE

ETFXREN E

2021 K52 .
iR s ER ﬁ?ﬁi&:ﬁ?ﬁ&

AR (E.Eﬁﬁ%ﬁﬁ)

<)

XREERESZI1ERE

5= MR

2519183
&R T
ETTEEREEE O
ANTEHITS Gz +3)
383 S RALH it aE
9"‘_3
mamanny | DUERERY | museremmns
TRER | A PEAEIR T
u
— ‘s RERES
a i EMIBERINE | B RS
B hRREA

CCFé—S’ R, ZIALHREFIGRE, WRiEE

RREEEREN ek

’ Blockchain-Based IoT (I0TJ, SCI-I, —k) &EEE: Fia

O

e] b Fl SR Gk oy e iy
Rt F k!
B Tkl

AHACHLRY

B UE L

fif) R

Mherkle i

AR

WA

V. msmBEsH
e

i

' O
B\
ATOM: Architectural Support and Gptimization Mechanism
for Smart Contract Fast Update and Execution in

.

N
=]

¢ BN XRiEHITIRERE SN, RSN EFHERN
HE

€ 20214 SMENEERS L
2

| 4 202@%7‘%%@%'—5 RZERAERIREMFIECNK

SmaritVM: A Smart Contract Virtuai Machine for Fast On-

HATIE L

Chain DNN Computations (TPDS,CCF A, —1F) BE1E&: FA

¢ EREXRE CHITESMEEALSETE
¢ RHXREFAESRES . WiFss. RITHRENRREEKS

ﬁﬁﬂs?‘i;‘%l ?
& fRREESKALESLE=A 4 K2 H A Uber AH+BCiazH

¢

%ﬁﬁﬂlﬂt%ﬁzﬁum O
(&E) Bﬁga\ E1$ (%l'/\\/n\

22 FFiERR
distributed ¢ HeAYRMAE LitEEH+EUNEERIE

O

pragma specifies the compiler version of Solidity.

Hello World

ol R >
> KIRGEEEANRA ‘

LUK AU (EVM) gl ROM

VG I
EEPAN RS

HEI Io wo rld MERS (%)

- .
pragma specifies the compiler version '

Ity.

// SPDX-License-Identifier: MIT

// compiler version myst be greater than or equt
pragma solidity »

ny O Application
contract Hello

string @ cGreet = "Hello World!™; : ntract-oriented Languages (Col)

| ()
Smart Contract Instruction Set
: O Q O Execution Environment (EVM)

LI RRE
(A1)

CoL Compiler

\

Native Code

Application [DeFi1] [Auction]

High-level
langua [VYD
— R 5
,(I \ y
Smart S ract execution environment (Vi ne) b
contract ’f‘
Smart contract instruc@

(P2P) Network

Peer-to-Pee

Native programming (High-level)

Operating System
NPU

High-level

language
Smart Sm
contract
&
Consensus | Pr SHREEEESY
———————— R
Network Peer-to-) Network Z5 R
Q Native programming (High-level) Q
1ve Operating System

: m CPU NPU FPGA &)

High-level

language
Smart Sm
contract
&
Consensus | Pr SHREEEESY
———————— R
Network Peer-to-) Network Z5 R
Q Native programming (High-level) Q
1ve Operating System

: m CPU NPU FPGA &)

A+ X

Nankai University

2021

e ATOM: Architectural Support and Optimizatior

Yaozheng Fang, Tao Li, Zhaolong Jian
In IEEE Internet of Things Journal
[Cite] [BibTeX] [Abstract] [Online] [S

oQﬁ

> Full paper & slides are availab
\ > https://www.fangyaozheng.com/

uesh

es (zh-cn)]

at:

pafism for Smart Contract Fast Up
. Ye lu*

Guiling Wang

o®

IEEE INTERNET OF THINGS JOURNAL, VOL. % KO, 11, JUNE 1, 3022

xecution in Blockchain-Based |

7954

ATOM: Architectural Support and Optimigation

Abstract—Blockchain-based Internet of Things (BC-IoT)
brings the advantages of blockchain into traditional IoT systems.
In BC-1oT, the smart contract has been widely used for auto-
malic, trusted, and decentralized applications. Smart contracts
require frequent adjust and fast update due to various rea-
soms, such as inevitable code bugs, changes of applications, or
security requirements. However, previous smart contract archi-
fecture and updating mechanism are low speed and cause high
overhead, because they are based on recompilation and redeploy-
ment in BC-ToT. Meanwhile, smart contract execution Is so time
consuming due to contract instruction dispatching and operand
loading in the stack-based Ethereum virtual machine (EVM). To
address these Issues, we propose a new smart contract architec-
ture and optimization mechanism for BC-IoTs, ATOM, which
provides architectural supports to uj contract economically
and fast executing in Instructionwise the first time, to the
best of our knowledge. We design a com|

Tao Li”, Yaozheng Fang', Zhaolong Tian, Xueshuo Xic

Mechanism for Smart Contract Fast Upd
and Execution in Blockchain-Based ToT

, Ye L ing Wang

machine (EVM), smart

L. INTRODUCTION
IN-BASED IoT (BC-IoT) is a new paradigm
that vses blockchain to build distributed Internet of
Things [1]-[6]. The paradigm has the advantages both of
blockehain and IoT, e.g. trusted, decentralized, and tamper-
proofing [7]-]9]. The BC-10T has attracted extensive attention
from both academia and industry [10], [11]. One of the most
important parts of BC-1oT is smart contract, a computer pro-
gram that can be astomatically executed on blockchain such
[12], and frees people from manual monitor-

Instruction (Aol) set to describe appllta
construct the bylecode of
directly assembling templal
by compilation. We also present

Aols rather than

arch B, 2021; revised May 20, 2021 and July 15,
9. 2021, Date of publication August 23, 2021; date of
23, 2022, This work was supported by the Nationu] Key
h und Development Program of China under Grant 2018YFR2 100300
by Zhejiang Lab under Grant 2021KFOABOS; in by the
Science Foundation of Tinjin under Grant 20JCZDICI0610
nt 19JCQNICOOSO0; in part by the State Key Luboratory of
ter Aschitecture (ICT, CAS) under Grant CARCHB202016 und Grant
CH201905; und in part by the Nutiona] Natural Science Foundation under
rant 62002175, (Corresponding athor: Ye Lo.)

Tao Li and Ye Lu are with the College of Computer Seience, Nunkai
University, Tianjin 300071, Chinu, ulso with the State Key Labortory of
Computer Aschitecture, Institute of Computing Technology. Chinese Academy
of Sciences, Beijing 100190, China, and also with the Tianjin Key Laboratory
of Network and Data Science Technology, Tianjin 300350, China (e-mail:
luye nunkai.edu.cn).

Yaozheng Fang, Zhuolong Jian. and Xueshuo Xie ure with the College
of Computer Science, Nankai University. Tuanjin 300071, China. and alse

as
ing [13]-[15]. Owing to the attributes of autoexecution and
consistent running result. the smart contract has been explored
to enable many applications in BC-IoT [16}-[19], such as
security management [20], [21].

Smart contracts in blockchain-based loT system need to
be updated frequently, because applications in such systems
should be adjusted continuously for various reasons. such
as inevitable code bugs and changes of application require-
ments [22]. For example, Luu ef al. [23] and Huang et al. [24]
pointed out that 8833 out of 19366 existing Ethereum con-
tracts are not bug free and vulnerable to attack. Thousands
of smart contracts are potentially vulnerable, which should
be corrected or patched up immediately through update [23].
However, the existing smart contract architecture in the orig-
inal blockchain is not designed to support efficient contract
update and execution. The most representative contract archi-
tecture and the most common-used contract execution envi-
ronment are the Ethereum virtual machine (EVM). This work
focuses on how to improve the contract update and execution
performance on EVM.

The traditional contract update is based on recompilation
and redeployment [26] in the application and the blockchain
layer under the typical blockchain-based loT [27], [28] as
shown in Fig. 1. Updating a contract usually needs to take
several steps as follows, First, smart contracts programmed

with the Tunjin Key Laboratory of Network and Data Science
Tianjin 300330, China.

Guiling Wang i with the Department of Computer Science. New lersey
Institute of Technology, Newark, NJ 07102 USA.

Digital Object Identifier 10.1109010T:2021.3106942

by a high-level 1 {e.g.. Solidity) are recompiled into
the bytecode, which is composed of a series of contract
instructions. In general, this recompilation requires long time
and high memory footprint. Second, the bytecode needs to

23274662 (@ 2021 EEE. Personal use is permitied, bat ﬂpuhll::mnnfr!dlambutlon requires IEEE permission.

See hitp: iese. orgl

tml for more.

Authorized licensed use imited to: NANKAI UNIWVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from |EEE Xplore. Restrictions apply.

Nankai University

> RSN FEENEED®
ﬁﬁgﬁﬁ\ BUG\ .l‘z .%*5

@ @ duxy ' M#IE(E)(1/2) ATOM

T, IEIEIREHGERR

Smart grid i i S city ‘ Supply chain

Application layer

2 Re-compile IE
—-

sed source file Mew smart contract

Healthcare@ loV =1 Grid
contract contract =] contract

5 Proposing contract
invocation tx

________ 1

. -
%_ Supply chain 1.5 1% Smart home I
[=] contract (=] contract [

Blockchain layer

Communicatio r @Base station g Wireless AC/AP ' Switch a Router -‘:?‘ Gateway 9 Bl zigbee -HB-lﬂT LEHa wsigfﬂx :
. = [

=(lige ,?Wweless# QR code Personal 1
‘ #_.;’ Printer W S computer |

]

I -]
:Qun layer |‘€ Surveillance

I =& Camera

I ‘

\

S 56 5 5% B 2 Rt

L
Sensors I ”!!J Bar code

=2

Q) o 3xY RIILE)(1/2) ATOM

> HEESYFENEE O @9, lockchain b oT)

HKEiRE. BUG. NABEXRE SUAEAEEF, NEEEERTIERE

Application layer

2 Re-compile IE
—-

W N —— T P LS S U S M e T T -

5 Proposing contract
invocation tx

Healthcare @ loV =] Grid afufacturing 5UF'P|YCh3iI'I I }E Smart home
contract contract W= cont contract =] contract contract
————— F _F B 3 3 &N 4 = F _§F N ¥ 3 0 B = P P S — e o wm e wm wm mm Em mm
Blockchain layer I 4 Deployment tx consensus ation tx consensus 8 Address update
--------- | 4 d o u k. B &8 4 4 Jd m m b B T T, L L L L ————
[Proof of Work] [Proof of Stake [PAXOS J [DPoS] [Prnnfnf EIapsedTime]

Communication layer | @Base station g Wireless AC/A Switch a Router -‘fﬁ‘ Gateway 9 Blue
O] o i

~
N,
@2
[
®
©
el
)
Z
o
)

f -
=)
)
f+1]
n,
e
2

e o U Ny U e e
) ; r a Riiiiil o i ,? ' # ' personal :
ion laver ! Surveillance _ Wireless = OR code -
\&Im ye : ‘% Carriaia | Sensors J”!!!I Bar code : w Priiites w - cnmputer:
D i e e s e _< : : > ___

S S o 5 o 2 i

b sy MR IE) (1/2) ATOM

> EEEANEENTE TS Q O ‘

KRR . BUG. NARKSHERESYIAMMEER, HEEMHENXRE, QO
BRSO AITHBRE,

<Rule> function mai"“§ PUSH 20 ADD MUL ML § ;

<Role> if(Role=="Root'}{ PUSH 20 ADD MUL erpretation
Root</Role> O | switch Obj: & |SLOAD//load E{}Hn o | ;
; — — S E
lusr/bin</Obj> PUSH 20 ADD M Execution Program
<[Rule> SLOAD//load @ p Counter ¢ s
Application] ,Contract in Solidity Bytecade EVM
O - 80% (__Stack)
L o Execute
s IS Operands Operation
i Q g o " ""\(Native Code
EE g’- H‘*--__:.--"Elytecode Runtime Context
-
. D ©
: 0.1% £
i e —— = —~ -
\ Compilation| Deploymen Data loading

 \

M IE)(1/2) ATOM

> AR5 RN

2 § s ‘
e B = | A\ —t \jE Aégm/— _/_W$1
o1 | 8L EERE. %g el 2 SN 1T/HE1T o
0x00 0x10 0x20 0x30 0x40 0x50 Ox60 0xBO 0x90 0xA0 0xFO0 mmwﬁﬁxﬁég ﬁg,éig
I| | I I H| Qtar p Speed Peak Throughput O
I !:“:5 oo%faé‘é%" nfo‘“ﬁ 1’9‘ "’C}:‘L“:’:,% %‘i"" o% ‘%‘ %b 0(%
%% q‘%«a *owﬂ ‘%m Y % %

JIT

d % “ ‘:F::::» ‘I\(:)1r
EVMIESARSLH
Stack Q O Ogc’ts:”iry
@ MERR: BRI SRR E

BIEMHIERN, MEEX <:)

Otack memaory E@%gﬂﬁ l‘a:E

&55 bits x 1024 elements (€.G., 1l

\ ~

Reduced
Max Latency

A+ X

XtE)T1/2) ATOM

> ﬁﬁ] E(_']Iﬂi ATOM: Architect@Qpport and Optimizatio

Contract Fast Upglate and Execution in Blockchain-based loT

Execution Optimization

Mechanism

B
Application Bytecode jon| Validation
‘ Bytecode Disp
Function » Template Selection Tegg:ate
, . ODE /
Input Attributions T
- Executable
Parameters embling r Bytecod rogram Counter <—
Outpu T e e

Smaft contract instruction set

Application-oriented.i tion set (Aol Set)

"Application Instructions Upd ons Permission Instructi

\

——

NI Execution Flow
—_—

Aol Execution Flow
g

Bytecode Runtime Flow
—

ative Instruction set l

 \

Construction Flow

Application 0x0f SAC Threshold Perform simple request checking with opgfal
Ox1f DENY Source Deny the requester “

Ug! HI“ !!,’E IIIREII SO LU cl - UG

peetfredspentiomrte-rerirge data update

Type Number Specify the update (22, 23, 24 for DU, PU, AU accordingly)

XtE)T1/2) ATOM

RIINTIE ZiEgeadm &I 7B Application-oriented Compact Instruction S@

Type Opcode Name Operand Pescription
IAETIaw= 2 2 A EFAFE cua s &..-.. ala e b o 11 0 1th o =Ta
- = A
0x0e ABAC Attr, Seurce Perform attribution-based checking with opera Q. D E I"Dj MJEH

ERE

NEHEINENZ

Update 0x23 PU Addr, Value Modify the byte under specified address to realizel function update N 4
0x24 Addr, Value Modify the byte under gpecified address to realizelaction update %ﬁ j:EI < y BEI:'{E\EE/%F[ﬁj:g y
Permission 0x25 Account Specify the updatable 3 & Q E%ﬁﬁ E , }Eé ES‘ZJ%:
\
P =]

Contract Address

DMOVO

Loc, Value Move the data from instruction to storage directly

Unenabled confract code update O

DMOVI1 Loc, Value Mpve the data from storage to instruction directly

TABLE [: Examples of application-oriented instruction in access control. O %H:E bﬂﬁ?‘é‘%\ , %I'ng%—l:

O O
A\ 3

KBTS, MHEFRENR
B, RAMFENEHRE

<

xtE)(1/2) ATOM

(]

‘0

L}

i . | P
+ » Function RBAC ! store(0, x) store(@,*)*"
' ' store(1, *) store(1,*)v
. > Action A ’ '

+ > Input Attributes

L} =

, » Parameter p

1

L Y

- « A
ﬁﬁ?'ﬂﬁ m 3. ﬁ;&

M s
NEPBEX
R7 B (51S)

Laxy R (1/2) ATOM

Nankai University

\4

NN TE anms=gs SR LT RERL =ty) O

—————— e ey

n

Contract Bytecode Phagram Couhter e ;,= AL °
o .
8 P % —— — K ! [toc = stack.pop() Siirege t0 EQ:
§ String A=abc’ I |stack.push(storage(loc)) Stack

J = loc = stack.pop();

5 Storage Validation |/ |5 1 oao: String A" =
% fm———————————— 1 ¥ §| loc = stack.pop(Mego storage(loc);
g ! i Gompatson: cute OPCODE Operation 3' of fset = stackqy s i m SRS
2 ransaction 2 et))% = 4 3
2| | «caller I PUSH © PUSH 0 2 offset = stack.pop(); I
[l I I SLOAD 7 @ get String B' = memory(loc, I

« Tx value |] DUP1 DUP1 1 2 Stack . y : - i
e | ™ |PusH 20 PUSH 2@ — 1| . if (A ==B'H{ !
E —— Input da i MUL MUL 1 o return stack.push(1);} @ i
8 I (string cdy | - |MLoAD Compare else{ Compare :
2| g =S EQ EQ return stack.push(@);} | return stack. h“f':';}_ I
= m EVM Native Code Native Code [
2 tri E=b R EVM Optimi : {
=] Bytecode Bytecod Instruction Native Code Effe |

A+ X

Nankai University

2022

[Cite] [BibTeX] [Abstract] [Online] [Sli zh-cn)]

oQﬁ

> Full paper & slides are available at:
\ > https://www.fangyaozheng.com/

4100

S¥? JJ’E@)'\!) SmartvVM

IEEE TRANSAGTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DEGEMBER 2022

- A Smart Contract Virtual Machine

Fast On-Chain DNN Computations

Jinni Yang, Zhaolong Jian, Zhiguo Wan ™,

Tao Li™, Yaozheng Fang™, Ye Lu®,

Abstract—Blockchain-based artificial Intelligence (BC-Al) has been applied for protecting deep neural network (D
tampered with, which is expected to further boost trusted distributed Al applications in many fields. However, due to s
environment architectural defects, itis challenging for previous BC-Al systems to support computing-intensive tasks on-|
such as DNN convolution operations. They have to offload computations and a large amount of data from blockchain to off

1o execute smart contracts as native code. This failure to take advantage of data locality has become one of the major eritical performance

bottienecks in BC-Al system. To this end, In this article, we propose SmartVM with optimization method

SmartVM into three components: 1) a compact DNN-oriented instruction set to d
reduce interpretation time. 2) a memory management mechanism to make Sm;
of DNN feature maps. 3) a block-based weight prefetching and parallel computing
prefetching in a pipelined manner. We perform the typical image classification in a priv:
SmartVM performance. Experimental results highlight that SmartVi
against the native code execution. Compared with the traditional off-c!
16, 11, and 12 over LeNet5, AlexNet, ResNet18, and MobileNet, res|
94.3%, and 93.7% over the above four models, while offering the same level
the smart contract virtual machine for DNN computation and is promising 1o fu

Index Terms—Deep neural network, smart contract, virtual machine, architectural

to support on-chain DNN inference

ort DNN in on-chaln with roughly the same efficiency

n spae:l up the overall execution by 70,

ipport technology'

ai Uriversity, Tian-
jankai University,
[Computer Archi-

o Tao Liis with the College of Computer Sumre,
jin J{)(}(j?]. Ckirm, with f.hz' Callege o)

tory of Netiwork
and Duta Science Te(h'mlo
eddie.cn.

s Yaozheng Fang and Zi
ence, Nankai University,
Key i.ﬂln:mwry gt bl]r(hmfaw. Tignjin 300071,

i edu.cn.

ence, Nankai University, Tianjin

her Science, Nankai Unir:cm'ﬁu

Inboratory of Lom;imfr Architecture, Institude
Chinese Academy of Sciences, Beijing 100045,

hira, and also with the Tianjin Key Laboratory of Network and
Technology, Tianfin 300071, China. E-rail: bl 2020_nk@foremail.

s Zhiguo Wan is with Zhejiang Lab, Hangzhou, Zhefiang 311121, China
E-mail: zhiguo_wan@]63.com

o Yusen Li is with the College of Computer Science, Nankai University,
Tianjin 300071, China. E-mail: liyusen@ubjl nankai.edw.cn.

Manuscript received 1 December 2021; vevised 19 May 2022; accepted 20 May
2022, Date of publication 24 May 2022; date of current version 22 September
2022

(Corresponding author: Ye Lu.)

Recommended for acceptance by |

Digital Object Identifier no. 10 I]ﬂSJPPDS 2022 3177405

1 INTRODUCTION

LOCKCHAIN-BASED artificial intelligence (BC-AI) has been a

new researching hotspot [1], [2], [3], expected to boost
trusted distributed Al training and inference [4], [5], [6], such
as protecting deep neural network (DNN) data from being
tampered [7], [8]. Smart contract is a piece of code which can be
deployed on blockchain for executing application logic [9],
[10]. Various blockchains have provided execution environ-
ment or virtual machine, such as Ethereum Virtual Machine
(EVM) [11], [12], for interpreting and executing smart contract.
The execution on virtual machine of the smart contract
deployed on the blockchain is called on-chain computing and
conducting the smart contract out of the virtual machine is cor-
respondingly called off-chain computing [13], [14], [15].

The existing main stream smart contract virtual machines
have limited BC-AI application scope and further develop-
ment, since previous they cannot process complex tasks. For
example, although the smart contract virtual machines such
as EVM sustain more than 3,200 kinds of Dapps [15], there is
no DNN application that can run on the blockchain [16].
DNN inference as yet cannot be directly and efficiently
performed on blockchain by smart contract [17], [18]. The
primary reason is that the smart contract execution environ-
ment in previous BC-Al system lacks operators, instructions
and corresponding mechanism to support redundant com-
plex DNN operations with high computational and memory
complexity.

These issues lead to the existing BC-Al applications on
blockchain that can only simply store a large amount of

1045-5218 © 2022 [EEE. Personal use (s permitted, but mwmuna’mf(lmulmn requires IEEE permission.

‘more infermation.

e
Authorized licensed use imited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:41:26 UTC from IEEE Xplora. Restrictions apply.

1l % & R IT{E @r\f) SmartVM

» Blockchain-based Artifici elligence (BC O

XReERT AR D VAR RE S, . AE S IRILAIR S (Blockchain-based Al Systems) @

» Problems of off- h@ DNN mference *
~ % FERIKEN =

Blockchain Interface > — O
STy D xi BRI SR B R AR

int w_lenet[658008];

" function GetWeights(){

—— return w[6500@];

HAEIRBIE

PUSH sLoap | i |
PUSH, .., SLOAD 8
?; é ":::::::iFi]IEEi:
Key Value _ . %
B m— N YR YT Ay =, =) 7 S S

=" HONNA B RS

PUSH, .., SLOAD 9

Compiled bytecode

/{ convolutional layer 2

for(.){ -For';...){ N . @ *yiﬁj\gﬂﬁﬁ% y

} 65000 The 6_50001" & w .

function pooti(H - | [— R Q@ HREBAM
EVM+Solidi

-Al L eNet ‘

ig. 2: CNN Computing Process if QI .

 \

, AlexNetM 5 1/M\B; EiEHRIEAMNS

g xs v BT {E @b’) SmartVM

@ ;_up_nlng Deep Learning on EVM

4 ESLHK

kladkogex 14" Jan'18
At my company we are starting an experimental project to extend EVM basic deep learning ‘ DIS IbUted U ber
capabilities.

This is not to train a neural network, but to use a pre-trai

€ Trusted analysis
d neural network inside a smart contract.
@ y not so much more expensive than

Computation-wise using a pre-trained neural network (is
ial Ethereum blockchain, so in our case we will Well - | think many people have expressed different ide
T i MG———— application so that all parties agree to the outcome.

doing, say, RSA.

As a toy example, you can consider an example of a smart contract that is an decentralized Uber which
The current plan is that: pays to drivers based on their behavior. The smart contract needs to differentiate bad drivers from good
drivers by running a neural network on driver historical behavior. Good drivers are get paid and bad
ved on the blockchain. We can use some of existing drivers do not get paid.

standards such as the ones used in Keras framework 26 Vit yon. e, Yau Teed arEe s Tejeed
full or penalized based on her behavior ..}

| understand that this may be a bit too heav a neural network as a trusted

run the EVM on a separate permissioned cluste

1. A pre-trained network is
neural network seri

to a neural network, and then the driver gets either paid in-

2. The EVM will n neural network from the blockchain.

Another example is when a sm s apples from a supplier and it needs to find out whether

abad a on chemical analysis data. Essentially you feed into the
3. Inthe si G ere we add a single predict instruction simil IGfrom Keras : alysis and the network tells you whether the apple is good
framew hi truction will take a fully qualified name of the al network and an input
aarr e neural network and produce output data. @ our quéstion, anytime a smart contract runs on data, there is no need to

Asa ampleinput data could be an English-language string, and output will be a German translation
of this s

could be a pre-trained network which is trusted by all participants.

e problem that we will need to solve in the process i ing deterministic floating point numbers

as |[EEE 754-2008 into the EVM in some way. ot saying EVM is a perfect place to run neural networks, on the other hand making it some kind of
ple extension to EVM/Solifity would draw many developers. Another possibility is to run a totally
If there are other people interested to run Al on EVN yould Be willing to cooperate on this to srent thing and then feed the results into Ethereum somehow ...
\ establish a standard that everyone uses ...

 \

TE @r\f) SmartVM

» Moving computations rat

> C lutional N | Net | QOQ
onvolutional Neural Ne

1@32x32 6@28x28 6@14x14 16 0 5><5 120 84
| E E g gﬁﬁ'i}: l+iHUFW%%/J\—ﬂQ§KE
. % : E C) & I, BREEK, BDE/N
.\ | * %H?éﬂ)iﬁiﬁh!ﬁ
' & i, c:onm%v
el | & RERE @ 5, BEBEEERT
Do . Wuun,élﬁum%%ﬁﬁ

channel !

:O Fig. 1: LeNetSarchﬁectu@rence 5 O

g xs v BT {E @r\f) SmartVM

» Moving computations ra n moving d
» Problems of on-chain C inference

---------------------------------- S \ A A. i/
Lenet-5 e SO Bytecode runtime data area (in memo HK ﬁt— D ﬁm E&ﬁﬁ f
L I — RS i S S0 : 1B BLmRK,
Contract Lenet-5_inference{ ‘ Prooram R i Storage
o i i i S T
Bl ETFSN BN BB R R
1 i XY - L <= HE SR []
1 function GetWeights(){ I =’ X R
! I | Aweightvalue ; B - -
- return w[65000]; . : il il ; %ﬁCN N ;’Eﬂ= = m,? -:I_ &Eé\
1 1 Instruction g m T—L }j /\
. \-: } validation Stk—> . : g
s 1 top M Stack el 2%
| function SetWeights(int Instruction ptr -
1 dispatch T
1| loc, int v){ L b 900 T— ; ; :
: Instruction \ \‘ 30k Il / | i | i ek : . O Jump _
\ execution Yo T { O MSTORE
0.4 & 700 -cdeneceniecnn ! I MLOAD
Operand i it F = 500 d-t i [l SLOAD
: i @ i
loading i EVM Memory " ,’ 5 - B Compute
2 = @
o i (~7x larger Pk 5 £ 500 - e —
peran st 2 i L ®]
aperaling than off-chain) :’, E é 5
s o
300 A
values Key value database (in hard disk) A 200
r 3
Key Value b ¥ 100 |
D) - z
------ ' 0 Wo s O gt P <@
’ - o
’,’, 00‘* 0 o Go“‘i ?00\ 00(\4 ¢ot go 000\,’\?00\’\ 00041?00\100@{5 ?c,'\ (,c."L
...... 61,076 Ws 1076 --~"Load (a) Instruction number in each layer (b) Latency of each layer

Lenet-5 smart contract

Nankai University

A x¥ v ¥ JJ’E@)’Y) SmartVM

» Problems of on—chain h@?ference
e iE—: AFEEBXR, N8F—=

ﬁ Contract Lenet-5_inference{ et

Program g i Storage

--------- | éj_nter (>0.6s to read) |\'E|;:E%I'§E(@X4@) : %ﬁCNNﬁEﬁ?ﬁ'
¥ or Ly
""""" et | | B ARSIREL EZRENERE

} d validation

int w_lenet[65000];

.

return w[65008];

1

1

function GetWeights(){ :
1

1

1

EVM Stack

function SetWeights(int Instruction
------ dispatch

loc, int v){

Instruction .. j— \
execution Output fm of § !
““““““““ last layer i /

Operand
Lenet-5 I ol R L loading
layers function conv

2
7 pdeature i ~
| : i EVM Memory ! >
| i (~Tx larger ' o
I // convol Operand ol 15 ¢ than off-chain)| !, 5
| operating ayer :" g
| for(@}{ Tab(. 70 }} |1/ | ex3s | |1 | .. j
ﬂ lue database (in hard disk) A @ 18
s
1 ; Pl
|\ functiBh pooll(.){ .. } Key Value —
(B U 2 I - 0 w, "_’,’ ,/
} P
| . 61,076 T ---"Load 0 L i
" A 3N A N D Al 0
Compiled N o) N 0 SR AV <
Lenet-5 smart contract byterr;’ode gEY RO T g P N <

(c) Memory overhead

 \

g xs v BT {E @r\f) SmartVM

» Moving computations ratthan moving da%O

» Problems of on-chai N inference
. = = et e g s ey Bk =: SB1F(for)BFEAHE(CPU)E

Contract Lenet-5_inference{ l Prc jram i ! Storage
o - —— - N i i
. . e : | (>0.6s to read) EEEEC E E(J =5
int w_lenet[65068]; N H NN | | % p)
|E i _lenet[65000] [F1 S] S ERTSE
1| function GetWeights(){ T e \ E e
1 1 l‘ ------- H 1 ~
1 return w[65008]; 1
! 1 Instruction B Y
. \: } validation Stk—s %
: 1 top Stack sl X
| function SetWeights(imnt Instruction ptr N
1 dispatch S
1| loc, int v){ : v
\
: Instruction b
\ execution \ 1
T |
loading emp feature : |
maps EVM Memory ! 5
& , . (~7x larger I
peran Input fm of 150 ¢ than off-chain)| |/
operating layer i !
7/
/
values Key value database (in hard disk) A
r 3
Key Value o L
Flush .=~
0 Wo i ,zl 0 4 T T
_________________ Py 004'\ oo 0@1’1 oo 004'3 ¢ ¢
,,,,,, 61,076 W 1076 ---"Load ¢ X C ° ¢

(c) Memory overhead
Lenet-5 smart contract

¥ AT 22) smartvm

Block-based weight stora Wid weight prefetchin

i

- 2
: 1]
: :
A | Interpreter I Validator Scheduler | !
: Fetch i / -|9 1
LS etc |n5t N Gas usage -
1) Normal i

1 by pro ounter
Compile : J | |
— _— i 1 Stack 51 | -
: ec) Other (temporary) :
! envifgnment EP— S || |platforms I ;
Bytecode | validation Y o I (eg, |]a i
0x6080608032660212206af01...2060806 | | 1 \ - Buffer -
1 \ . I (temporary) 1
Instruction N ‘ 2 i
dispatching (e.g., CONV, o I = i
J POOLING, FC, c IE _lww I :
feature RELU, etc) g - - 1
PC=PC+1 = Weight Il Weight I
2| 2 B biock block 1K
Parallel computing Storage (persistent) '
’
1
1

NN-oriented Instructions * Dynamic Memory O ¢ CNN Weight Prefetching and

Management Metho Parallel Computation

0> A4 Al ~ ¥

Nankai University

- sz 2) smartvm

» CNN-oriented Instructions

| Type | Name Opcode | Description | Stack required (Key
Computation CONV_SING o0x21 Implement singl 1 convolution 8 (Kernel, Output cha
(Convolution) CONV_MUL 0x22 Impleme el convolution 8 (Kernel, Output channel;%tride)
CONV_3D 0x23 Impleme olution 8 (Kernel, Output channel, Stride)
CONV_TPD 0x24 Implemen sed convolution 8 (Kernel, Output channel, Stride)
(Pooling) POOL_MAX 0x25 Implement max pooling ut channel)
POOL_AVG 0x26 [aent average pooling t channel)
POOL _OL 0x27 It overlapping pooling channel)
(Full connected) | FULL_CON 0x28 plentent full connected layer I, Output channel)
MAT_MUL 0x lement matmul two matrix)
(Active) ACT_SMO 0x2a mplement softmax function
ACT_SM1 0x2b fyImplement Sigmoid function
ACT_RL 0x2c | Implement ReLU function
ACT_TANH 0x2d Implement Tanh function 1 (Value)
(Buffer) BUF_SCL. 0x2e Increase Buffer’s data with specific 1 (Specific times)
BUF_SCIL1 0x2f Reduce Buffer’s data with specific times | 1 (Specific times)
0x30 Add Buffer’s data and bia 1 (Base address of bias)
Data transfer M 0x31 Transter data from Memo @ tter 2 (Data oftset)
Oxa2 Transfer data from Buf o‘Memory 2 (Data offset)
0x33 Transfer data fro tack 2 (Data offset, Size)
0x34 Transfer data from er to Storage 2 (Data offset, Size)
(Buffer se 0x35 Clean Buffer’s data 1 (Clean numbe
0x36 Fill Buffer’s data with specific data 1 (Specific filled'data)
BUF_INIT 0x37 Initial Buffer with specific size 1 (Specific size
BUF_ALLO 0x38 Allocatdispecific size to Buffer 1 (Specific size)
BUF_FREE 0x39 Free_spedific size from Buffer 1 (Specific size)
BUF_COPY 0x3a C e Buffer 2 (Start d pointers)

~0

¢ HEES
¢ Conv

o°<

& HIREBES
€ Stg.
& Stk.
¢ Mem.
€ Buf.

Halx¥

Nankai University

MALE(222) SmartvMm

» CNN-oriented Instructio

& %HiFlmple ion
& XEUTARICHRAEH

¢ (SHICRERKRTR
*Push + 1*CNNI
Qﬁg\ BYAR

Q Native Codef{T1EIL

© Q9

/—_\ © Compile

High-level based Smapt Contract Compiled Bytecode

Contract Lenet-5_inference{

// weigels definilion PUSH ©x20
PUSH exes5
inference function PUSH @xe1

tion main(int[24][24][1]
public returns (int) {

mbly{
Conv(32, 5, 1, 8, 1, 6, @, @)
Pool(1, 2, 3, 4)

Conv(32, 5,1, 8, 1, 6, @, @)
Pool(l, 2, 3, 4)

Conv(32, 5,1, 8, 1, 6, 0, @)
Fc(1, 2, 3, 4)
Fc(l, 2, 3, 4)

© Runtime stack

£hd Runtime Stack in SVM
Convolutional compu ~ (input size) | @x2@
for i:=0; i<outp e; (kernel size) | @x@5
for j (stride) exel
fo (padding) 2
input_cns; m++{ (inchl size) = @xe1

p<k_size; p++{ (kernels) 8x06

for q:=0; g<ksize; g++{ (reserve) oxee

// Compute output fm (reserve) ox00

} (Conv id) Bex23

onv execution in native code _-/

g xs v BT {E @b’) SmartVM

t

Frontend
programming

Serpent LLL
source code source code

A 4
-

...............

and
ttributions

17187 >, <3, 7;°>, «1,

......

‘var’?>,

* Backend . —_—
compilation YUL-based i ase, exponent) -> result {
O intermediate : Or { let i :=0 } It(i,

language add(i, 1) } { result :=
Normal
instructions

<
- CONV
> | Bx608060405234801561001057600080Fd5b POOLING | CNN-oriented
! Q L s instructions
FC

 \

TE @r\{) SmartVM

TE @r\f) SmartVM

Prefetch & Parallel

; Prefetching N
block #N : nt" kernel kernels—”

single weight | K4 ” Ko | | Kn I

single weight

single weight

-
N =

~

Time for " Computing P
computing one <+~ nh output L

convolution (T,) feature map

J
»

{wby,.values}

Pz Timeline >
{whby.values} |+

Key-Value Database

Fig. 10: The weights prefetching and parallel computation
Fig. 9: The block-based weight st@rage. model in Conv instruction.

f' \

B BERRBRMLA > %ﬁ%ﬁéﬁﬁg\iﬁ&%iﬂl PILE /REAE
AR > Eﬁiﬁ@%@nm Q*
B BRAR -> IESNREFTEH I RS O

B SRk C)
m SLIRERS @otivaﬁon\ Problem%@ms

> BB 2021 KkiETHRE

