
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022 7959

ATOM: Architectural Support and Optimization
Mechanism for Smart Contract Fast Update

and Execution in Blockchain-Based IoT
Tao Li , Yaozheng Fang , Zhaolong Jian, Xueshuo Xie , Ye Lu , and Guiling Wang

Abstract—Blockchain-based Internet of Things (BC-IoT)
brings the advantages of blockchain into traditional IoT systems.
In BC-IoT, the smart contract has been widely used for auto-
matic, trusted, and decentralized applications. Smart contracts
require frequent adjust and fast update due to various rea-
sons, such as inevitable code bugs, changes of applications, or
security requirements. However, previous smart contract archi-
tecture and updating mechanism are low speed and cause high
overhead, because they are based on recompilation and redeploy-
ment in BC-IoT. Meanwhile, smart contract execution is so time
consuming due to contract instruction dispatching and operand
loading in the stack-based Ethereum virtual machine (EVM). To
address these issues, we propose a new smart contract architec-
ture and optimization mechanism for BC-IoTs, ATOM, which
provides architectural supports to update contract economically
and fast executing in instructionwise for the first time, to the
best of our knowledge. We design a compact Application-oriented
Instruction (AoI) set to describe application operations. We can
construct the bytecode of smart contract from application by
directly assembling templates prebuilt upon the AoIs rather than
by compilation. We also present an optimized mechanism for AoI
execution to enable access addressable storage place rather than
the indirect access through stack. We perform ATOM on a BC-
IoT testbed based on private Ethereum and Hyperledger Burrow.
The experimental results highlight that ATOM is more effi-
cient than state-of-the-art approaches. ATOM can reduce update
latency by 62.7%, ledger size by 70%, and gas usage by 90%
on average, respectively. Compared with the traditional smart
contract architecture, ATOM can improve EVM Memory access
efficiency significantly by up to 10× and achieve improvement
of execution efficiency with up to 1.6×.

Manuscript received March 8, 2021; revised May 20, 2021 and July 18,
2021; accepted August 19, 2021. Date of publication August 23, 2021; date of
current version May 23, 2022. This work was supported by the National Key
Research and Development Program of China under Grant 2018YFB2100300;
in part by Zhejiang Lab under Grant 2021KF0AB04; in part by the
Natural Science Foundation of Tianjin under Grant 20JCZDJC00610
and Grant 19JCQNJC00600; in part by the State Key Laboratory of
Computer Architecture (ICT, CAS) under Grant CARCHB202016 and Grant
CARCH201905; and in part by the National Natural Science Foundation under
Grant 62002175. (Corresponding author: Ye Lu.)

Tao Li and Ye Lu are with the College of Computer Science, Nankai
University, Tianjin 300071, China, also with the State Key Laboratory of
Computer Architecture, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China, and also with the Tianjin Key Laboratory
of Network and Data Science Technology, Tianjin 300350, China (e-mail:
luye@nankai.edu.cn).

Yaozheng Fang, Zhaolong Jian, and Xueshuo Xie are with the College
of Computer Science, Nankai University, Tianjin 300071, China, and also
with the Tianjin Key Laboratory of Network and Data Science Technology,
Tianjin 300350, China.

Guiling Wang is with the Department of Computer Science, New Jersey
Institute of Technology, Newark, NJ 07102 USA.

Digital Object Identifier 10.1109/JIOT.2021.3106942

Index Terms—Ethereum virtual machine (EVM), smart
contract.

I. INTRODUCTION

BLOCKCHAIN-BASED IoT (BC-IoT) is a new paradigm
that uses blockchain to build distributed Internet of

Things [1]–[6]. The paradigm has the advantages both of
blockchain and IoT, e.g., trusted, decentralized, and tamper-
proofing [7]–[9]. The BC-IoT has attracted extensive attention
from both academia and industry [10], [11]. One of the most
important parts of BC-IoT is smart contract, a computer pro-
gram that can be automatically executed on blockchain such
as Ethereum [12], and frees people from manual monitor-
ing [13]–[15]. Owing to the attributes of autoexecution and
consistent running result, the smart contract has been explored
to enable many applications in BC-IoT [16]–[19], such as
security management [20], [21].

Smart contracts in blockchain-based IoT system need to
be updated frequently, because applications in such systems
should be adjusted continuously for various reasons, such
as inevitable code bugs and changes of application require-
ments [22]. For example, Luu et al. [23] and Huang et al. [24]
pointed out that 8833 out of 19 366 existing Ethereum con-
tracts are not bug free and vulnerable to attack. Thousands
of smart contracts are potentially vulnerable, which should
be corrected or patched up immediately through update [25].
However, the existing smart contract architecture in the orig-
inal blockchain is not designed to support efficient contract
update and execution. The most representative contract archi-
tecture and the most common-used contract execution envi-
ronment are the Ethereum virtual machine (EVM). This work
focuses on how to improve the contract update and execution
performance on EVM.

The traditional contract update is based on recompilation
and redeployment [26] in the application and the blockchain
layer under the typical blockchain-based IoT [27], [28] as
shown in Fig. 1. Updating a contract usually needs to take
several steps as follows. First, smart contracts programmed
by a high-level language (e.g., Solidity) are recompiled into
the bytecode, which is composed of a series of contract
instructions. In general, this recompilation requires long time
and high memory footprint. Second, the bytecode needs to

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-3244-0812
https://orcid.org/0000-0002-8245-8415
https://orcid.org/0000-0003-0805-6394

7960 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

Fig. 1. Typical BC-IoT architecture.

be redeployed on the blockchain by proposing the deploy-
ment transaction. Until all nodes in the blockchain reach a
consensus about this transaction, which takes a long time,
the bytecode cannot be redeployed successfully. Finally, the
redeployed bytecode of the updated smart contract can be
executed by proposing another transaction named invoca-
tion transaction [29]. We can find that it is challenging to
update the deployed contracts directly, which goes through
tedious and time-consuming steps. There is no instruction sup-
port for bytecode modification to enforce the immutability
of contracts or modify the bytecode directly. Consequently,
a new smart contract must be recompiled into bytecode
and redeployed on the blockchain, even with a few code
modifications.

In fact, there are two remedial methods called the proxy-
based method [30] and controller-data method, which can
help to implement smart contract update, but their poor
performance cannot meet the application requirements in
blockchain-based IoT. Both of the two methods need to main-
tain an additional contract, such as proxy contract or controller
contract, to record the address of each deployed smart con-
tract. When deploying a new contract on the blockchain,
the corresponding address needs to be updated in proxy
or controller contract by broadcasting several transactions.
Such indirect pattern introduces high storage overhead and
large redundancy on the blockchain. Confirming these transac-
tions usually take 20–60 s in blockchain-based IoT especially
on the Ethereum. Moreover, updating the aforementioned
8833 contracts can take more than six months by the two
methods. Such poor performance in the existing architec-
ture has been proven to restrict smart contract to be widely
applied in blockchain-based IoT. Therefore, the new archi-
tecture design for fast contract update should be explored
deeply.

In addition, to efficiently update smart contracts, improv-
ing contract execution efficiency is another goal of this
article. Because the stack-based virtual machine does not
specify operand address, lots of operand loading instructions
are generated, thus incurring high overhead. EVM [12], the

current common smart contract execution environment, gener-
ates even more instructions for operand loading than normal
stack-based virtual machine, because EVM Stack width is
fixed [31], [32]. Specifically, EVM Stack is specially tailored
for cryptographic computing: before loading operand to Stack,
the hash value of the operands needs to be calculated. The
hashing operation needs many EVM Memory access, thus
causing high latency. Therefore, existing contract execution
is not adaptive to applications with low-latency requirements.
To solve this problem, BPU, a modularized architecture using
FPGA, is proposed to accelerate smart contract execution [33].
However, such FPGA-based contract acceleration needs pre-
liminary knowledge and has a long period for hardware
design.

In order to get insights on how to improve contract update
and execution efficiency, we first conduct a comprehensive
performance analysis on contract parsing from the applica-
tion (in particular, security policy), contract compilation, and
execution. We learn that the time-consuming recompilation,
interpretation, and data loading are the causes of the low
efficiency. To this end, we propose a new advanced architec-
ture and optimization mechanism named ATOM to support
smart contract update and execution in instructionwise. In
ATOM, a compact Application-oriented Instruction (AoI) set
is presented to support contract update: the commonly used
operations of a specific application are encapsulated into a few
AoI instructions to replace dozens of EVM native instructions.
ATOM constructs executable bytecode from the application by
directly assembling templates prebuilt upon the AoIs rather
than by compilation that has high overhead. This template-
based method only needs source code parsing, but not complex
morpheme or syntax analysis, which is an indispensable part
of compilation. In ATOM, a new data access mechanism is
also designed to enable directly loading the reference type
operand from addressable data segment (e.g., EVM Memory,
Storage) for AoI, while traditional mechanisms require all the
operands to be loaded to EVM Stack first before calculation.
This new mechanism in ATOM can decouple AoI execution
data from Stack data in runtime, thus modifying AoI impacts

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ATOM: ARCHITECTURAL SUPPORT AND OPTIMIZATION MECHANISM 7961

Fig. 2. Hierarchical smart contract model and performance analysis. 1 Parsing. 2 Compilation. 3 Execution.

on neither Stack nor EVM control flow. We summarize the
key contributions of this article as follows.

1) We propose ATOM, a new smart contract architecture
for fast updating and execution, and also validate ATOM
efficiency through performance evaluation on our private
blockchain-based IoT testbed.

2) We propose a template-based light-weighted bytecode
construction mechanism that only involves application
requirement parsing and template assembling rather
than compilation. Our method can speedup bytecode
construction by up to 10× compared with traditional
compilation-based construction.

3) We present a compact AoI set (AoIS) that has strong
descriptive capacity for application operations and
decreases the number of bytecode instructions signifi-
cantly. Compared with the state of the art, our instruc-
tions can reduce the update latency by up to 56%. The
ledger size can be reduced by over 80% and the average
GAS usage is reduced by 10%.

4) We develop contract executing optimization techniques
to enable efficient AoI execution. The AoI operands are
loaded in native code rather than pushed into the Stack
before execution, which bypasses the heavy SHA3 com-
puting and execution and decreases the EVM Memory
access number by 90%. The experiment results high-
light that ATOM can speedup the execution for more
than 1.6×.

II. BACKGROUND AND MOTIVATION

The typical architecture of smart contract has six layers,
as shown in Fig. 2. In the top two layers, smart contracts
are formulated based on application. In the two layers below,
smart contracts described by contract-oriented language [34]
(e.g., Solidity) are compiled into bytecode by a corresponding
compiler in the third layer. Bytecode includes various types
of contract instructions, such as stack operation, jump, and
comparison. The bytecode is employed and executed in its own
execution environment, such as EVM, and the native code layer.

A. Smart Contract Update

Most smart contracts were designed for different types of
financial transactions [35], [36]. Because complex computing

and frequent updating were not involved, the existing smart
contract architecture was not designed to support efficient
contract updating and execution. In particular, there is no
instruction support to modify deployed bytecode directly.
However, with the smart contracts rapid applying in many
other fields, contract updating requires a higher level of
frequency and timeliness.

Previous smart contract update can be realized by the proxy-
based method, controller-data method, hot replace method, and
fixed storage method to cope with contract immutability. The
contract immutability, as aforementioned in Section I, refers
that the records of contract modification cannot be tamper
whatever but contract itself can be modified to a certain extent.
The codes and the global variables in a contract are both stored
as items in the key-value database, which can be updated or
modified directly. Moreover, traditional EVM allows users or
developers to modify the value of global variables.

The fixed storage method applies some fixed storage places
to store the contracts’ addresses before contract code running.
When updating contract, the new contract’s address is recorded
in the certain fixed storage place. In fact, the two mainstream
methods for updating smart contract are the proxy based and
the controller data. There are also two kinds of contract in both
of the two methods: 1) the business contract for application
of the business execution and 2) proxy (or controller) con-
tract for storing contracts’ addresses. A business contract can
be delegated by proxy or controller contract. When updating
contract, the new programmed business contract must be com-
piled down to bytecode, and then the new bytecode should be
deployed in blockchain. Overall, the processing for contract
update in mentioned two methods is both realized through
recompilation and redeployment [37].

Conducting contract updates require compilation-based
bytecode construction but this procedure is very resource con-
suming, as shown in Fig. 2. Contract compilation time is
approximately nine times longer than the parsing time, and
compilation incurs high CPU overhead, which is twice higher
than parsing. When frequent updating is needed in certain
application scenarios, contract compilation becomes the bot-
tleneck of the overall performance. Consequently, all of the
above observations motivate us to modify contract from the
bytecode level directly, in order to support contract fast update.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

7962 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

Fig. 3. Smart contract execution in EVM.

B. Smart Contract Execution

Contract execution can be expressed as follows [12]:

o ≡ �(Td). (1)

A smart contract function � can be invoked by a transac-
tion [36]. The invocation transaction data Td is the input of
�. o is the output of � and it is a byte array.

For many applications, contract execution can be expressed
in an extended form as follows:

o ≡ �(Td, p) (2)

∀o, ∃A, o → A. (3)

Here, p is parameter. Note that if p is empty, then function (2)
becomes the same as (1). A is an action based on output
o. We use the role-based access control (RBAC) [38] as an
example to illustrate the application. The RBAC rule checks
whether the requester is in the accessible role list of the cor-
responding resource. Td represents a specific access request,
� represents the checking function, p represents the accessi-
ble role list, o is FALSE or TRUE, and the corresponding A
is DENY and ALLOW. Such a smart contract can automati-
cally allow or deny access requests. Smart contract updating
is needed when the allowed role list changes or the access
control rule is changed.

As shown in Fig. 3, � executes by stack-based EVM.
Inside EVM, instruction operands and temporary fundamen-
tal variables are stored in Stack. Different from traditional
virtual machines (e.g., Java Virtual Machine), the width of
the Stack in EVM is fixed 256 bit, and the max depth
of Stack is 1024 [31], [32]. Td reference variables and
function return value are stored in Memory. Storage is the
online persistent storage. EVM follows Harvard architec-
ture [12]: the contract bytecode and data are stored separately
in Storage.

The execution of � follows four steps: 1) instruction retriev-
ing; 2) storage place validation; 3) instruction dispatching; and
4) instruction execution. The first three steps are interpretation.
According to the contract address in the invocation transaction,
the program counter retrieves each instruction from Storage.
Before instruction execution, EVM validates the Memory and
Stack overflow. Finally, by instruction dispatching, instruction
is executed in the native code layer. In such a stack-based envi-
ronment, instruction operands need to be loaded into Stack

before calculation. As a result, instruction native code exe-
cution can write/read the runtime context to/from Stack. Our
preliminary studies show a surprising data that the validation
and dispatching time take 99% of the whole execution time,
while the execution in the native code layer only accounts for
1%. Furthermore, data loading time is up to four times the
calculation time. This discovery tells us the validation time,
dispatching time, and data-loading time should be reduced to
improve system performance.

C. Limitations of Existing Architecture

Existing smart contract architecture cannot support econom-
ical contract update and fast execution for several reasons.
First, existing contract instruction set cannot support contract
update directly. There is no bytecode modification instruc-
tion that can be invoked to modify the code segment directly.
Besides, instructions cannot be directly added or deleted in the
compiled bytecode without incurring execution errors, such as
jumping address invalidation. Instruction operands are stored
in Stack. Adding or deleting instructions can impact the Stack
context. This may break EVM control flow and cause jump
address errors. EVM control flow is variables, not constants,
which implies that the destination of a jump is a value read
from Stack [31]. As a result, the contract only can be updated
by redeployment.

Second, the existing execution optimization techniques can-
not be applied to EVM. For example, two widely used
traditional virtual machine execution optimization methods
(Ahead-Of-Time [39] and just-in-time (JIT) compilation [40])
are not suitable for EVM. EVM can indeed achieve faster
execution by ahead-of-time compilation (AOT) in certain sce-
narios. For example, some contracts that involve cryptographic
computing have been precompiled for fast execution. But the
AOT contracts are not flexible enough to support update,
because precompiled contracts in the format of binary codes
do not support runtime modification. The flexible JIT compila-
tion may potentially support code update and faster execution.
The JIT is used for dynamic programming languages, while
the contract-oriented language, such as Solidity, is static. JIT
is not suitable for smart contracts, which require data con-
sistency among different nodes. JIT compiler may generate
different compiled codes in different operating systems and
hardware, which subsequently output different data and break
data consistency.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ATOM: ARCHITECTURAL SUPPORT AND OPTIMIZATION MECHANISM 7963

Fig. 4. ATOM overview.

III. ATOM ARCHITECTURE

This article aims to achieve economical smart contract
updating and efficient contract execution. Essentially, smart
contract update is bytecode update. This motivates us to
conduct smart contract update at instruction level for effi-
ciency and provide holistic architecture support for contract
update and execution. Our architecture design follows three
guidelines.

1) The deployed bytecode should be modified directly to
conduct the contract updating.

2) The number of bytecode instructions should be reduced
as much as possible to shorten instruction dispatch-
ing and validation time, and thus, improve execution
performance in EVM.

3) Contract recompilation should be removed as much as
possible to reduce contract update time.

Following the above guidelines, we propose ATOM,
application-oriented architecture support for efficient smart
contract updating and execution for any application, which
can be formulated by (2).

Fig. 4 shows an overview of ATOM. Given an applica-
tion, ATOM employs a template-based bytecode construction
mechanism to generate executable bytecode based on the
EVM built-in native instruction set and an AoIS we designed.
The AoIs will then be executed with execution optimization
mechanisms we proposed. Specifically, the compact AoIS
provides update and permission instructions and operation
instructions commonly used in the application. AoIS greatly
reduced the number of bytecode instructions by encapsulating
many commonly used repetitive instructions into a few spe-
cific instructions. Update instructions are designed to support
different types of updating, e.g., change of access control rules
if the application is access control.

Based on the aforementioned AoIs and native instruc-
tion set, bytecode template sets are prebuilt based on the
application. Then, the template-based bytecode construction
constructs an executable bytecode by selecting a bytecode
template from bytecode template set according to an applica-
tion function, and assembles the selected template with other

application data. This template-based construction can reduce
compilation time and resource consumption.

An execution optimization mechanism is proposed to enable
fast execution of AoIs by accessing Memory and Storage
directly to reduce repetitive operand loading instructions. Note
that AoI execution does not depend on Stack and thus, the
AoI execution data are decoupled with Stack data in runtime.
Hence, we are able to modify AoI directly to achieve contract
update.

A. Application-Oriented Instruction Set

Extending the EVM native instruction set, we design a
compact AoIS to support contract update and speedup con-
tract execution. We add three types of instructions: 1) update
instruction Wupdt to enable contract update; 2) permission
instruction Wper to manage whether to allow a contract
updating or not; and 3) application instruction set Wao to
encapsulate the commonly used operations in the specific
application. Before the AoI instruction execution, the corre-
sponding operands will be pushed into Stack. When instruction
executes, the operands are popped from Stack as parameters
of the instruction execution.

Application instruction is used for executing application
functions and operations. We take access control as an example
to explain the design details about AoIS, as shown in Table I.
Different access control models can utilize different instruc-
tions to realize their own function and action. For instance,
the RBAC model needs to conduct role-based access check-
ing frequently; once an access request is denied, the request to
access certain resource should be blocked. Both functions are
frequently used and involve many native instructions, which
take a long time to run. Thus, we encapsulate them into
ωRBAC (0x0d) and ωDENY (0x1f), respectively, to improve
efficiency.

Update instruction is used for performing contract update.
Contract updating can be either the data update of parameter p
or the code update of � and A. We propose instructions ωDU ,
ωPU , and ωAU to update data p, function �, and action A,
respectively. For example, ωPU(0x0e) represents code update,

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

7964 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

TABLE I
EXAMPLES OF AOI IN ACCESS CONTROL

Fig. 5. Two-step bytecode construction. From left to right: A Application, B Template selection from template set, C Assembling, and D Executable
bytecode.

which updates application function to ABAC, whose opcode
is 0x0e, as shown in Table I.

Upon receiving an update request ωPU or ωDU , ATOM first
check whether the expected � or A exists in AoI or not. If
they exist, the code is updated by ωPU or ωAU , respectively;
otherwise, an error message is returned. Considering bytecode
of � and A is stored in the code segment as a byte array, each
byte represents an instruction identifier number or instruction
operand. In ATOM, code update is achieved by modifying the
byte value in the byte array.

Permission instruction is used to manage whether a contract
update request can be granted or not. Permission instruction
specifies which kind of roles can do contract update (e.g.,
owner or caller) and which kind of updates that different roles
can execute (e.g., data update or code update). We design ωUR

and ωUT to indicate the accounts that can do updating and
the updatable types, respectively. During contract deployment,
as predefined rules, the updatable roles and type information
are written into a fixed place in Storage by ωUR and ωUT ,
respectively. Upon receiving an update request, ωUR and ωUT

compare the update request information with the predefined
update rules. Then, an agreement or rejection to the update
request is returned.

B. Template-Based Bytecode Construction

In ATOM, we construct executable bytecode from appli-
cation specification directly with the help of a precompiled
bytecode template set. Bytecode construction has two steps:
1) template selection and 2) assembling.

Building Bytecode Templates: For a specific application, we
build bytecode templates based on different functions involved
in this application. A bytecode template consists of two types
of instructions: 1) AoI Wao and 2) EVM native instruction
Wnative. Wao can realize application functions while Wnative
can realize stack and control operations (e.g., push and jump),
etc. A bytecode template T can be expressed as follows:

T := (Wao, Wnative) ⊆ T (4)

where T represents a bytecode template set.
Template Selection: We take access control application as

an example (see Fig. 5). We list two bytecode templates in
the template set: 1) template ACL and 2) template RBAC.
Since the application specifies RBAC is needed, thus the cor-
responding template RBAC is selected, instead of template
ACL.

Assembling: The template assembling needs two inputs:
1) the selected template and 2) application data (including

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ATOM: ARCHITECTURAL SUPPORT AND OPTIMIZATION MECHANISM 7965

Fig. 6. Execution optimization mechanism for string comparison.

input attributes, p and A). In addition, some default attributes
(related to update and permission information) are also assem-
bled in this step (if not specified in the application). In detail,
Td and p are assembled by Wstore and A is assembled by WA.
After the assembling, the specific application is constructed
into an executable bytecode.

Although � is certain in each executable bytecode, the num-
ber of Td and p may be different, which is similar to function
overload in programming. ATOM stipulates that Td and p are
stored in Memory rather than Stack, because the Memory is
addressable. ATOM stores p first and Td second. At the begin-
ning of p segment and Td segment, there is a flag to record
the number of p and Td.

C. Execution Optimization Mechanism

Bytecode execution includes operand loading and calcula-
tion. Reference type operands must be loaded from addressable
storage place (e.g., Memory and Storage) into Stack before cal-
culation. We use an example to illustrate the current contract
execution procedure. As shown in Fig. 6, String A is stored
in Storage. A call transaction is used for invoking a contract
to compare string A with transaction input data (string B).
Contract address in transaction refers that which contract is
invoked. EVM can find the corresponding bytecode according
to contract address. The input data of transaction are stored in
Memory because string is a kind of reference type variable. For
string comparison, EVM needs execute SLOAD and MLOAD
instructions in EVM bytecode to load string from Storage and
Memory to Stack accordingly (steps 1 and 2). When EQ
instruction executes, the two strings need to be popped from
Stack and be compared (steps 3 and 4). The instructions
generated by these steps are fixed and repetitive.

In our optimized execution, optimized bytecode does not
need SLOAD and MLOAD instruction to access Memory and
Storage through Stack indirectly. Strings A and B can be
accessed from Storage and Memory directly in the native
code layer (1). Because instruction operands are stored in
Memory orderly, we can leverage this knowledge to learn their
address in advance. Then, the accessed strings can be com-
pared directly (2). Our AoI execution does not rely on Stack
to store operands, and thus, AoI modification has no impact
on Stack data in runtime. As a result, the control flow will

Fig. 7. Smart contract-based access control overview.

not be broken and we ensure the updating of the AoI has no
errors.

IV. IMPLEMENTATION: ACCESS CONTROL

Smart contracts have been deployed to implement automatic
access control in BC-IoT [41], [42]. To evaluate the efficacy
and efficiency of ATOM in supporting smart contract update
and execution, we choose access control as the application to
deploy smart contracts.

We implement two access control functions: 1) simple
access control (SAC) [29], which can prevent Denial-of-
Service (DoS) attack through comparing access interval with a
preset threshold. Once a SAC contract is deployed, the thresh-
old is fixed and 2) RBAC, which provides different access
control to different roles, such as administrator and guest. Only
roles in the accessible role list can conduct permitted opera-
tions, such as read or write, on certain resources. Once an
RBAC contract is deployed, the accessible role list is fixed.
The RBAC contract checks whether the role of the requester
is inside the accessible role list. A contract update request
can be either changing from SAC to RBAC and vice versa or
changing the parameters of SAC and RBAC.

Fig. 7 shows an example of the smart contract-based access
control. In the beginning, we deploy a smart contract that

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

7966 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

Fig. 8. Access control policy contract update process.

implements SAC. The corresponding bytecode is constructed
by choosing SAC template and assembling it with other native
node sets. This executable bytecode instance will then be
deployed in the access control system. After deployment, the
executable has a unique address, which is used for invoking.
As shown in the left part of Fig. 8, the deployed executable
bytecode has data segment and code segment. The data seg-
ment, which is the parameter of SAC contract, is organized
as a trie, and SAC contract records a hash value of the trie
as Storage Root. The bytecode of a SAC contract is stored
as byte array, and the SAC contract records the hash value of
the byte array. The SAC bytecode is deployed in the access
control system with a unique address (0xabcd).

Later, we update the access control policy to be RBAC.
Then, we need to update the smart contract accordingly. Note
that we need to update both the code and the data consider-
ing RBAC has different parameters from SAC. As shown in
Fig. 7, we first send an update request (step 1), which con-
tains contract address, update type, and update data. Before
the updating is executed, the update permission needs to be
validated. ATOM first checks whether RBAC template exists
in the template set or not and then conducts the data update
and code update through update instructions (e.g., ωDU) (step
2). Before and after the update, the address of contract is not

changed. As shown in Fig. 8, for data update, the threshold
is updated to the RBAC parameters (e.g., filename) in trie.
For code update, ωSAC is updated to ωRBAC. Specifically, in
the code segment, the instruction identity number of the cor-
responding position is modified from 0x1a to 0x4f. After
contract update, the access request is checked by ωRBAC
rather than by ωSAC. ATOM executes ωSAC in the begin-
ning and ωRBAC after update both in the optimized execution
mechanism.

V. PERFORMANCE EVALUATION

A. Evaluation Methodology

ATOM is evaluated on the application of access control in two
real testbeds: 1) private Ethereum and 2) Hyperledger Burrow.
The objectives of the evaluation are threefold: 1) testing the
performance improvement of ATOM over traditional archi-
tecture regarding contract update and execution; 2) providing
insights of ATOM’s outperforming its peers; and 3) studying
the impact of ATOM on the original Ethereum/ EVM.

To build the Ethereum (version 1.9.20) and Hyperledger
Burrow (version 0.30.5) smart contract platforms, we employ
eight nodes, three of which are equipped with ARMv7 CPU
and 2GB memory, and five of which are equipped with
XeonE5-2630 CPU (2.3 GHz, 6 Cores) and 96-GB memory.
The nodes are connected via the same local area network.
EVM (version 1.9.20) is the smart contract execution environ-
ment. The Ethereum official recommended evaluation frame-
work Truffle1 is employed to evaluate the performance. Smart
contracts are coded in Solidity. We utilize XACML to imple-
ment the access control policy and the XML Reader2 to parse
the policy. In our experiments, we implemented two kinds
of contracts: 1) SAC contract and 2) RBAC contract.3 The
smart contract is programmed by Solidity (version 0.5.1). We
choose two widely adopted strategies for contract updating as
our comparison baselines: 1) proxy-based and 2) controller-
data model.4 The source code for this evaluation is available
at http://github.com/nkicsl/atom.

To evaluate the overall performance improvement, we
choose the latency to accomplish the contract updating and
CPU overhead throughout the whole updating procedure as
the evaluation metrics. In addition, we choose ledger size, gas
usage, and EVM Memory overhead to evaluate the overhead
of contract updating incurred by ATOM and our peers.

B. Evaluation Results

1) Overall Improvement: In this section, we illustrate the
performance of ATOM and our peers throughout the whole
updating process: including parsing XACML to Solidity-
described contract, contract compiling Solidity-described con-
tract to executable bytecode, and bytecode update to eventually
the bytecode execution. The parsing and contract compilation
together are called bytecode construction. In ATOM, parsing
refers to construct executable bytecode from XACML directly.

We randomly generate four groups of XACML policies. The
policies are either SAC or RBAC. Each policy will be parsed
into a smart contract. There are 500, 1000, 1500, and 2000

1https://www.trufflesuite.com/docs/truffle/
2https://www.npmjs.com/package/xmlreader/
3Note that currently there is no mature and widely accepted benchmark

for rigorous evaluation of EVM performance. Although the real Ethereum
transactions and contracts can be found on the public blockchain, it is unclear
if such workload is sufficiently representative to EVM performance.

4https://github.com/fisco-bcos/fisco-bcos

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ATOM: ARCHITECTURAL SUPPORT AND OPTIMIZATION MECHANISM 7967

(a) (b) (c)

Fig. 9. Overall performance. (a) Latency in Ethereum. (b) Latency in Hyperledger Burrow. (c) CPU overhead in different phases.

(a) (b)

Fig. 10. Bytecode construction performance. (a) Bytecode construction latency. (b) CPU overhead (I: Parsing, II: Compilation).

XACML policies, respectively, for each group and correspond-
ingly, the same number of smart contracts will be generated.
Regarding the contract updating, the originally generated SAC
smart contract will be updated to RBAC contracts and vice
versa.

As shown in Fig. 9(a), in Ethereum, ATOM can reduce the
overall latency by 63.9% and 68.7% compared with Proxy-
based and CD model on average. As shown in Fig. 9(b), in
Hyperledger Burrow, ATOM can reduce the latency by 62.7%
and 67.6% on average. To illustrate the CPU overhead in each
phase, we choose the group with 2000 policies (and contracts).
As shown in Fig. 9(c), ATOM can reduce the CPU overhead in
contract update and execution by 1.73% and 1.97% compared
with Proxy-based and CD Model, respectively.

2) Bytecode Construction: For our comparison methods,
bytecode construction refers XACML parsing and contract
compilation. In our method, it refers XACML parsing, tem-
plate selection, and assembling. We randomly generate five
groups of XACML policies. There are 1200, 2400, 3600,
4800, and 6000 XACML policies, respectively, in each group.
The function and parameter of XACML policy are generated
randomly.

Fig. 10(a) illustrates the latency of bytecode construction
time. We can see that ATOM can achieve 90% speedup than
the baselines. For example, among the 6000 XACML poli-
cies, the average construction time of ATOM is 0.15 ms per
policy, and our peers are about ten times more than ATOM.
This is because, we construct bytecode by assembling selected
templates rather than compilation. The template-based method
only needs to parse the requirement attributions and assemble
them with bytecode templates. On the contrary, the compila-
tion needs to parse the contract source file, perform morpheme

and syntax analysis, even if only one instruction is added or
deleted.

Fig. 10(b) shows the CPU overhead during bytecode con-
struction. ATOM has much lower CPU overhead. For example,
ATOM CPU peak rate is 6% while the compilation peak rate is
10%. This is because the template-based bytecode construc-
tion does not need to perform the complex morpheme and
syntax analysis as in compilation-based construction.

3) Contract Update: To evaluate contract updating, we
prepare 12 groups of independent contracts. The number of
contracts in each group ranges from 500 to 6000 with 500 as
the increment. In each group, the function of each contract
is random. Contract update is to modify the function of each
contract to another function, i.e., we update all SAC contracts
to RBAC contracts and vice versa.

Update latency is the time to accomplish contract update.
(Note that the update latency does not include the blockchain
system consensus time, considering the consensus time is
influenced by many external factors, such as CPU capac-
ity and mining difficulty, and has no direct relationship with
ATOM.) Fig. 11(a) shows that in Ethereum, compared with
the proxy-based update model, ATOM reduces the average
update latency by about 47.8%. Compared with the controller-
data model, ATOM reduces the average update latency by
about 61.7%. Fig. 11(b) shows that the results in Hyperledger
Burrow are 49.9% and 63.75%, respectively. This is because
the controller-data model needs to perform index update not
only in controller contract but also in data contract. The
results prove that ATOM can update the access control con-
tract in a shorter time, which adapts the fast dynamic system.
Redeployment time is approximately equal to index update
time, because they both process a transaction. Our peer

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

7968 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

(a) (b)

(c) (d)

Fig. 11. Contract update consumption. (a) Contract update latency comparison in Ethereum. (b) Contract update latency comparison in Hyperledger. (c) Ledger
size comparison in contract update in Ethereum. (d) Ledger size comparison in contract update in Hyperledger.

methods need to perform at least two transactions: 1) contract
deployment and 2) index update, while ATOM only needs one
transaction. In fact, the update at the instruction layer is similar
to index update, because the update instruction also performs
Storage data modification.

Ledger Size: In Ethereum, ledger size refers to the size of
ledger file (/geth/chaindata/*.log) in runtime. In Hyperledger
Burrow, ledger size refers to the log file (./*.log). Ledger data
mainly include block data and user data (contract data, con-
tract code, transaction message, etc.) [12]. Fig. 11(c) shows
that in Ethereum, ATOM reduces the ledger size by about
81.3% and 84.1%, respectively, on average compared to our
peer methods. In Hyperledger Burrow, Fig. 11(d) shows that
the ledger size reduction achieves 39.4% and 55.6%, respec-
tively. We also draw blank blockchain (pure block data) ledger
size in Ethereum. After 6000 times update, ATOM is six times
larger than the size of the blank blockchain, while the peer
methods are 24 times and 29 times larger, respectively. The
result implies that ATOM can be applied to systems with low
storage capacity. ATOM achieves a smaller ledger because it
can perform the update on the original contract directly rather
than redeploying a new one. Note that those discarded smart
contracts (data and code) cannot be deleted, so they are kept
in the ledger permanently. The Suicide instruction provided
by original EVM is used for disabling invocation but not for
deleting contract data and code.

GAS Usage: Gas is the virtual currency used in Ethereum
to measure the computational and storage resources required
to perform certain actions on the Ethereum [32], [43]. For
example, ADD instruction costs two units of gas, and MUL
instruction costs three units. Less gas usage in contract updat-
ing and execution indicates a more economical and efficient
method.

We compare gas usage in contract update regarding contract
deployment and SSTORE execution, because our peer methods
need both contract deployment and index update by SSTORE
instruction. We price the gas usage in update instruction to
be the same as SSTORE because both perform Storage mod-
ification. The gas usage is retrieved from the corresponding
transaction receipt directly.

In this evaluation, we perform the contract update from SAC
to RBAC ten times and calculate the average GAS usage. The
results are shown in Table II: most gas are used for contract
deployment in update in the two traditional methods since they
need contract redeployment to achieve update. ATOM can save
about 270 000 gas on average, because ATOM does not need
contract deployment that we can modify code segment directly.
The SSTORE gas usage is 20 000 (fixed) [12]. Traditional
methods additionally need about 8000 gas usage for update
parameter while ATOM needs about 6500 gas usage, consid-
ering the update parameter in ATOM is Int8 type (8 bit) rather
than Ethereum Address type (160 bit).

4) Contract Execution (EVM Interpretation Latency):
EVM interpretation includes instruction retrieving, storage
place validation, and instruction dispatching. We prepare three
contract functions: 1) an IF statement to perform string com-
parison. One string is stored in Memory and another is stored
in Storage; 2) a FOR statement to perform repeated execution
of IF statement; and 3) a recursive function to retrieve string
from Storage for two times and then perform comparison. We
execute the three functions equal number of times. ATOM pro-
vides three application instructions (ωif, ωloop, and ωrecu) to
encapsulate IF, FOR, and recursive function, respectively.

The results show that ATOM can realize the aforemen-
tioned three functions by 101, 101, and 101 instructions,
which includes one application instruction and 100 native

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ATOM: ARCHITECTURAL SUPPORT AND OPTIMIZATION MECHANISM 7969

TABLE II
GAS USED COMPARISON IN CONTRACT UPDATE AMONG ATOM AND TWO TRADITIONAL METHODS

(a)

(b)

Fig. 12. Contract execution performance under different platforms and functions. (a) Contract execution performance under different functions in Ethereum.
(b) Contract execution performance under different functions in Hyperledger Burrow.

TABLE III
CONTRACT EXECUTION LATENCY REDUCTION IN DIFFERENT PLATFORMS AND FUNCTION MODES

instructions. The proxy-based method needs 236, 814,
and 1457 instructions and controller-data model needs 307,
923, and 1683 instructions to realize the three func-
tions, respectively. We execute the three functions for
500, 1000, 1500, and 2000 times and calculate the aver-
age latency of ATOM and the peer methods. Fig. 12(a)
shows that in Ethereum, ATOM can reduce 34.4% and 39.7%
interpretation latency on average, compared with the proxy-
based model and controller-data model, respectively. In
Hyperledger Burrow, Fig. 12(b) shows that ATOM can reduce
37.3% and 31.7% interpretation latency on average (also can
be seen in Table III).

Data Loading Latency: We deploy five smart contracts to
evaluate the data loading latency with string loading. The smart

contracts are initialized with a string array with different sizes
(5000, 10 000, 15 000, 20 000, and 25 000). Each string is gen-
erated randomly, and the width of each string is less than
the width of EVM Memory. We invoke the five contracts to
load strings from Memory to Stack, and record loading time.
Fig. 13(a) shows that ATOM can reduce the time for data
loading by 76.7% on average. The time for different types of
data loading is given in Fig. 13(b). We use flag 0 to repre-
sent loading data from Storage and flag 0 to represent loading
data from Memory. Since ATOM loads the instruction operand
from Storage and Memory directly, data loading latency can
be reduced by 66.4% on average.

CPU Overhead: We choose string size 25 000 as an exam-
ple to show the CPU overhead. As seen in Fig. 13(c), the time

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

7970 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

(a) (b) (c) (d)

Fig. 13. Instruction execution performance comparison between ATOM and original EVM. (a) String loading time, from Memory to Stack. (b) String loading
time in different storage situations. (c) CPU utilization under 25k times loading. (d) EVM Memory I/O.

for 25 000 times data loading in ATOM is 1–10 ms, while in
EVM is 1–48 ms. During the data loading process, the average
CPU overhead of ATOM is similar to EVM with a differ-
ence of 0.2%. Hence, ATOM does not bring any additional
computation consumption.

EVM Memory Access: We evaluate the number of EVM
Memory access during data loading by recording the num-
ber of MLOAD instruction execution. The results in Fig. 13(d)
show that the number of Memory access is reduced by 90%
in ATOM. ATOM does not need to execute SHA3 instruction,
which can make the width and type of operand be similar to
Stack through hash calculation. SHA3 needs a large number of
Memory access to calculate the hash value. As a result, ATOM
needs read Memory for only one time, while the original EVM
needs ten times longer latency for one time data loading.

VI. CONCLUSION

In this article, we proposed ATOM, which provides architec-
tural support for economical contract update and optimization
mechanism for contract fast execution. We developed a com-
pact AoIS to describe application operations, realize econom-
ical contract update, and propose template-based bytecode
construction to realize lightweight construction from applica-
tion to bytecode. We also designed an execution optimization
mechanism for AoI to realize fast execution and decouple AoI
execution data from Stack data in runtime. The experimental
results highlight that ATOM has greatly outperform the state-
of-the-art update methods, and our architecture expectedly
matches the requirements of the blockchain-based IoT.

REFERENCES

[1] C. Lin, D. He, N. Kumar, X. Huang, P. Vijayakumar, and K.-K. R. Choo,
“HomeChain: A blockchain-based secure mutual authentication system
for smart homes,” IEEE Internet Things J., vol. 7, no. 2, pp. 818–829,
Feb. 2020.

[2] J. Pan, J. Wang, A. Hester, I. Alqerm, Y. Liu, and Y. Zhao, “EdgeChain:
An edge-IoT framework and prototype based on blockchain and smart
contracts,” IEEE Internet Things J., vol. 6, no. 3, pp. 4719–4732,
Jun. 2019.

[3] O. Novo, “Scalable access management in IoT using blockchain:
A performance evaluation,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4694–4701, Jun. 2019.

[4] B. K. Mohanta, D. Jena, S. Ramasubbareddy, M. Daneshmand, and
A. H. Gandomi, “Addressing security and privacy issues of IoT
using blockchain technology,” IEEE Internet Things J., vol. 8, no. 2,
pp. 881–888, Jan. 2021.

[5] Y. Qu et al., “Decentralized privacy using blockchain-enabled feder-
ated learning in fog computing,” IEEE Internet Things J., vol. 7, no. 6,
pp. 5171–5183, Jun. 2020.

[6] F. Chen, Z. Xiao, L. Cui, Q. Lin, J. Li, and S. Yu, “Blockchain for
Internet of Things applications: A review and open issues,” J. Netw.
Comput. Appl., vol. 172, Dec. 2020, Art. no. 102839.

[7] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet of Things:
A survey,” IEEE Internet Things J., vol. 6, no. 5, pp. 8076–8094,
Oct. 2019.

[8] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras,
and H. Janicke, “Blockchain technologies for the Internet of Things:
Research issues and challenges,” IEEE Internet Things J., vol. 6, no. 2,
pp. 2188–2204, Apr. 2019.

[9] H. Wang, D. He, J. Yu, N. N. Xiong, and B. Wu, “RDIC: A blockchain-
based remote data integrity checking scheme for IoT in 5G networks,”
J. Parallel Distrib. Comput., vol. 152, pp. 1–10, Jun. 2021.

[10] Y. Xu, J. Ren, G. Wang, C. Zhang, J. Yang, and Y. Zhang, “A blockchain-
based nonrepudiation network computing service scheme for industrial
IoT,” IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3632–3641,
Jun. 2019.

[11] M. Wu, K. Wang, X. Cai, S. Guo, M. Guo, and C. Rong, “A comprehen-
sive survey of blockchain: From theory to IoT applications and beyond,”
IEEE Internet Things J., vol. 6, no. 5, pp. 8114–8154, Oct. 2019.

[12] G. Wood. (2014). Ethereum: A Secure Decentralised Generalised
Transaction Ledger. [Online]. Available: http://gavwood.com/Paper.pdf

[13] C. Ge, Z. Liu, and L. Fang, “A blockchain based decentralized
data security mechanism for the Internet of Things,” J. Parallel
Distrib. Comput., vol. 141, pp. 1–9, Jul. 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S074373151930810X

[14] L. Zhu, C. Chen, Z. Su, W. Chen, T. Li, and Z. Yu, “BBS: Micro-
architecture benchmarking blockchain systems through machine learning
and fuzzy set,” in Proc. IEEE Int. Symp. High Perform. Comput.
Architect. (HPCA), 2020, pp. 411–423.

[15] Y. Zhang and J. Wen, “An IoT electric business model based on the
protocol of bitcoin,” in Proc. 18th Int. Conf. Intell. Next Gener. Netw.,
2015, pp. 184–191.

[16] U. Majeed, L. U. Khan, I. Yaqoob, S. A. Kazmi, K. Salah, and
C. S. Hong, “Blockchain for IoT-based smart cities: Recent advances,
requirements, and future challenges,” J. Netw. Comput. Appl., vol. 181,
May 2021, Art. no. 103007.

[17] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du, “CertChain: Public and
efficient certificate audit based on blockchain for TLS connections,” in
Proc. IEEE INFOCOM Conf. Comput. Commun., 2018, pp. 2060–2068.

[18] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable and fair
realization,” in Proc. IEEE INFOCOM Conf. Comput. Commun., 2018,
pp. 792–800.

[19] R. Cheng et al., “Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contracts,” in Proc. IEEE Eur. Symp.
Security Privacy (EuroS&P), 2019, pp. 185–200.

[20] Z. Su, Y. Wang, Q. Xu, M. Fei, Y.-C. Tian, and N. Zhang, “A secure
charging scheme for electric vehicles with smart communities in energy
blockchain,” IEEE Internet Things J., vol. 6, no. 3, pp. 4601–4613,
Jun. 2019.

[21] Y. Zhang, M. Yutaka, M. Sasabe, and S. Kasahara, “Attribute-based
access control for smart cities: A smart contract-driven framework,”
IEEE Internet Things J., vol. 8, no. 8, pp. 6372–6384, Apr. 2021.

[22] J. Xu et al., “Healthchain: A blockchain-based privacy preserving
scheme for large-scale health data,” IEEE Internet Things J., vol. 6,
no. 5, pp. 8770–8781, Oct. 2019.

[23] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2016, pp. 254–269.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ATOM: ARCHITECTURAL SUPPORT AND OPTIMIZATION MECHANISM 7971

[24] Y. Huang, Q. Kong, N. Jia, X. Chen, and Z. Zheng, “Recommending dif-
ferentiated code to support smart contract update,” in Proc. IEEE/ACM
27th Int. Conf. Program Comprehension (ICPC), 2019, pp. 260–270.

[25] P. Bailis, A. Narayanan, A. Miller, and S. Han, “Research for practice:
Cryptocurrencies, blockchains, and smart contracts; hardware for deep
learning,” Commun. ACM, vol. 60, no. 5, pp. 48–51, 2017.

[26] Z. Zheng et al., “An overview on smart contracts: Challenges, advances
and platforms,” Future Gener. Comput. Syst., vol. 105, pp. 475–491,
Apr. 2020.

[27] S. Biswas, K. Sharif, F. Li, B. Nour, and Y. Wang, “A scalable blockchain
framework for secure transactions in IoT,” IEEE Internet Things J.,
vol. 6, no. 3, pp. 4650–4659, Jun. 2019.

[28] M. Zhaofeng, M. Jialin, W. Jihui, and S. Zhiguang, “Blockchain-
based decentralized authentication modeling scheme in edge and IoT
environment,” IEEE Internet Things J., vol. 8, no. 4, pp. 2116–2123,
Feb. 2021.

[29] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the Internet of Things,” IEEE Internet Things
J., vol. 6, no. 2, pp. 1594–1605, Apr. 2019.

[30] W. Shao, Z. Wang, X. Wang, K. Qiu, C. Jia, and C. Jiang, “LSC:
Online auto-update smart contracts for fortifying blockchain-based log
systems,” Inf. Sci., vol. 512, pp. 506–517, Feb. 2020.

[31] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse:
Thorough, declarative decompilation of smart contracts,” in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), 2019, pp. 1176–1186.

[32] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and
Y. Smaragdakis, “MadMax: Surviving out-of-gas conditions in ethereum
smart contracts,” in Proc. ACM Program. Lang., vol. 2, 2018, pp. 1–27.

[33] T. Lu and L. Peng, “BPU: A blockchain processing unit for accelerated
smart contract execution,” in Proc. 57th ACM/IEEE Design Autom. Conf.
(DAC), 2020, pp. 1–6.

[34] A. Juels, A. Kosba, and E. Shi, “The ring of gyges: Investigating
the future of criminal smart contracts,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, 2016, pp. 283–295.

[35] P. Cuccuru, “Beyond bitcoin: An early overview on smart contracts,”
Int. J. Law Inf. Technol., vol. 25, no. 3, pp. 179–195, 2017.

[36] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Security, 2016, pp. 270–282.

[37] M. Lohr and S. Peldszus, “Maintenance of long-living smart contracts,”
in Proc. Workshops Softw. Eng. (SE) , Mar. 2020, pp. 98–104.

[38] A. Saini, Q. Zhu, N. Singh, Y. Xiang, L. Gao, and Y. Zhang, “A
smart contract based access control framework for cloud smart health-
care system,” IEEE Internet Things J., vol. 8, no. 7, pp. 5914–5925,
Apr. 2021.

[39] N. Reijers and C.-S. Shih, “Improved ahead-of-time compilation of
stack-based JVM bytecode on resource-constrained devices,” ACM
Trans. Sensor Netw., vol. 15, no. 3, pp. 1–44, Aug. 2019.

[40] E. Schkufza, M. Wei, and C. J. Rossbach, “Just-in-time compilation
for verilog: A new technique for improving the FPGA programming
experience,” in Proc. ASPLOS, 2019, pp. 271–286.

[41] B. Bera, S. Saha, A. K. Das, and A. V. Vasilakos, “Designing blockchain-
based access control protocol in IoT-enabled smart-grid system,” IEEE
Internet Things J., vol. 8, no. 7, pp. 5744–5761, Apr. 2021.

[42] J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and B. Fang, “A survey on access
control in the age of Internet of Things,” IEEE Internet Things J., vol. 7,
no. 6, pp. 4682–4696, Jun. 2020.

[43] X. L. Yu, O. Al-Bataineh, D. Lo, and A. Roychoudhury, “Smart contract
repair,” ACM Trans. Softw. Eng. Methodol., vol. 29, no. 4, pp. 1–32,
2020.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:46:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

