
Applied Soft Computing 109 (2021) 107507

W
a

b

c

i
c
A
e
p
w
a
m
p

T

c

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

AWAP: Adaptiveweighted attribute propagation enhanced
community detectionmodel for bitcoin de-anonymization
Xie Xueshuo a,1, Wang Jiming b,1, Ye Junyi c, Fang Yaozheng b, Lu Ye b, Li Tao a,b,∗,

ang Guiling c

College of Computer Science, Nankai university, Tianjin, 300350, China
Tianjin Key Laboratory of Network and Data Security Technology, Tianjin, 300350, China
New Jersey Institute of Technology, Newark, NJ, 07102, USA

a r t i c l e i n f o

Article history:
Received 31 October 2020
Received in revised form 12 January 2021
Accepted 6 May 2021
Available online 21 May 2021

Keywords:
Bitcoin anonymity
Community detection
Attribute propagation
Feature engineering

a b s t r a c t

Bitcoin is a kind of decentralized cryptocurrency and widely used in online payment partially for
its anonymity mechanism. The anonymity, however, also attracts the usage of cryptocurrency by
criminals in ransomware and money laundering, and limits its further application and development.
In this paper, we aim to improve Bitcoin’s auditability with de-anonymization. Many previous studies
have used heuristic clustering or supervised machine learning to analyze the historical transactions
for identifying user behaviors. However, heuristic clustering only considers the topological structure
of the transaction graph and ignores the transaction attributes. While supervised learning is usually
limited by the size of labeled datasets, resulting in an unsatisfactory accuracy. To resolve the above
problems, we propose an Adaptive Weighted Attribute Propagation enhanced community detection
model, named AWAP, which considers both the transaction’s topological structure and the transaction
attributes. We first parse the transaction data from the public ledger and construct a bipartite graph to
describe correlations between addresses and transactions. Then, we use a five-step feature engineering
pipeline to extract Bitcoin address attributes and build an attribute graph. Finally, we design an
adaptive weighted attribute propagation algorithm running on the attribute graph to classify the
Bitcoin addresses and identify user behaviors. Extensive experiments highlight that AWAP model
achieves 12% higher accuracy and 25% higher F-score on average, compared to the state-of-the-art
Bitcoin address classifiers and other community detection algorithms. To evaluate the effectiveness of
AWAP, we also present two case studies on Bitcoin address classification and Bitcoin trace-ability in
ransomware.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, cryptocurrency has become a buzzword in both
ndustry and academia. Bitcoin, as the largest and most popular
ryptocurrencies, is proposed by Satoshi Nakamoto in 2008 [1].
s a global decentralized cryptocurrency, Bitcoin has received
xtensive attention because of its anonymity and security. In
ractice, users can register a Bitcoin account without any real-
orld identity. The Bitcoin system generates a pseudonym, such
s a hash value or a public key to identify the user. The anonymity
echanism ensures that the real identity of a trader is not ex-
osed to the real world. This property attracts a large number

∗ Corresponding author at: College of Computer Science, Nankai university,
ianjin, 300350, China.

E-mail address: litao@nankai.edu.cn (L. Tao).
1 These authors contributed equally to this work and should be considered

o-first authors.
ttps://doi.org/10.1016/j.asoc.2021.107507
568-4946/© 2021 Elsevier B.V. All rights reserved.
of users to join the Bitcoin community. However, the anonymity
also makes Bitcoin a tool of circulating currency in some ille-
gal activities, which limits its applications due to the lack of
regulation. Recently, Bitcoin has been abused in ransomware,
thefts, and scams [2,3], such as the well known black market Silk
Road [4]. From the perspective of regulatory purposes, it is crucial
to understand the anonymity of the Bitcoin system and detect
criminal transactions.

Therefore, a healthy cryptocurrency ecosystem should (1) sup-
port technical legal investigations to ensure the safety and legal-
ity of transactions and (2) provide sufficient anonymity to protect
user privacy [5]. In this paper, we mainly study the following
two questions: (1) How much anonymity does the Bitcoin system
provide? (2) Can we obtain user behaviors by analyzing their
historical transactions?

In the Bitcoin ecosystem, a transaction is a cryptocurrency
transfer record between addresses. The transaction contains Bit-

coin addresses and some other information. All the transactions

https://doi.org/10.1016/j.asoc.2021.107507
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107507&domain=pdf
mailto:litao@nankai.edu.cn
https://doi.org/10.1016/j.asoc.2021.107507

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

a
f
a
p
t
b
m
b
t
i
i
t
l
d
l
o

w
T
n
a
c
r
g
t
p
i
o
s
a
e
a
t
t
a

f
p
c
w
t
g
a
B
w
a
W
o
t
u
p
s

re recorded on the public ledgers to assure their validity. There-
ore, anyone who join the Bitcoin system is able to obtain and
nalyze these large amounts of transaction records. With these
ublic transactions, we are able to construct a transaction graph
o track user transactions and further analyze the Bitcoin user
ehaviors. Heuristic clustering has been proposed to build a
apping between the Bitcoin addresses and the Bitcoin users
y studying the transaction graph [6,7]. This mapping improves
ransaction traceability and statistical feature analysis. However,
t only considers the relationship between Bitcoin addresses,
gnoring many other transaction information, such as Bitcoin
ransaction type, value, and time. Recently, some supervised
earning-based methods [8] are proposed to classify Bitcoin ad-
resses. However, these methods are limited by the size of the
abeled dataset. Therefore it is not suitable for large-scale analysis
f historical transactions with limited labels.
Furthermore, community detection based approaches are

idely used to study the relationship among nodes in a graph.
he goal of community detection is to group closely connected
odes into a community so that the nodes in the same community
re tightly connected, while the connections between different
ommunities are very sparse. Early community detection algo-
ithms are mainly running on the topological structure, such as
raphs. In recent years, many studies have added node attributes
o the graph to form an attribute graph, which achieves better
erformance. The community detection on the attribute graph
s now widely used in user similarity analysis and content rec-
mmendation systems in social networks. However, there are
ome challenges we are facing to apply the community detection
lgorithm to the huge Bitcoin transaction dataset. (1) How to
ffectively extract the useful information of a specific Bitcoin
ddress from the massive historical Bitcoin transactions? (2) How
o handle the mismatching between the topological structure and
he node attributes? and (3) How to tune the weights of the node
ttributes?
To address the above challenges, we design an Adaptive

Weighted Attribute Propagation enhanced community detection
ramework, named AWAP. First, we parse the transactions in the
ublic ledger and construct a bipartite graph [9] to describe the
orrelations between Bitcoin addresses and transactions. Then,
e use a five-step pipeline to extract the Bitcoin address at-
ributes from historical transactions and construct an attribute
raph. Finally, we design an adaptive weighted attribute prop-
gation algorithm running on the attribute graph to classify
itcoin addresses and study the de-anonymization. In AWAP,
e treat the transaction attribute graph as a dynamic system
nd propagates the attributes between nodes across the graph.
e name this process attribute propagation. We use the results
f Bitcoin address classification to analyze the relationship be-
ween the nodes. Two case studies are implemented to reveal
ser behaviors. The experimental results show that AWAP out-
erforms other state-of-the-art methods. Our contributions are
ummarized below:

• We design a community detection model that takes trans-
actions from public Bitcoin ledgers as input. The model
leverages the attribute propagation to group the Bitcoin
addresses with similar behaviors into the same community.

• We propose an adaptive weighted attribute propagation
algorithm running on the attribute graph. The algorithm
mainly consists of: (1) a random walk to choose the start
nodes from the graph, (2) an adaptive weight matrix to
control the contribution of attributes, and (3) a voting mech-
anism to adjust the attribute weights.

• We present a five-step feature engineering pipeline to pre-

process the variable-length attribute vector. The pipeline

2

includes (1) data normalization by MinMax, (2) feature gen-
eration by feature combination, (3) feature selection by lo-
gistic regression, (4) dimensionality reduction by Principal
Component Analysis (PCA), and (5) feature discretization by
converting numerical features into binary features.

The remainder of this paper is organized as follows: Section 2
introduces the background and related work. Section 3 presents
the feature engineering techniques and the proposed framework
in detail. Section 4 reports and analyzes the experimental results.
Section 5 discusses two case studies and Section 6 gives a brief
review of related work. Finally, Section 7 concludes the paper.

2. Background and motivation

In this section, we first briefly introduce the background of
Bitcoin, community detection algorithms, and recent research
progress of de-anonymization in Bitcoin. Then, we analyze the
characteristics of Bitcoin ledger and the feature engineering tech-
niques used to generate the node attributes. Finally, we summa-
rize the goals and challenges of our work.

2.1. Bitcoin

Nowadays, Bitcoin is still the most widely known cryptocur-
rency and application in Blockchain. It applies Proof of Work
(PoW) to eliminate the central bank, and decentralize and secure
the transaction ledger in a cooperative, distributed manner [10].
The main challenge to implement Bitcoin is to achieve consensus
in generating coins, storing and managing the ledger in a dis-
tributed and trustless environment. In a Bitcoin network, each
participant generates at least a public/private key pair. When
people transfer bitcoins, one participant will generate a transac-
tion which is digitally signed to prove his/her ownership of the
bitcoins and announce the transaction publicly. Any Bitcoin user
is able to verify the signed transaction with the associated public
key. With the increase of Bitcoin transactions over time, Bitcoin
becomes a composition of large-scale transactions. Each transac-
tion can hold multiple inputs and multiple outputs. Transactions
record the trading relationships between Bitcoin addresses and
other trading information, such as transaction fees and the gen-
eration time of blocks. We can examine all transactions to extract
useful information, such as Bitcoin traders’ addresses.

The key information of a transaction is the hash value serving
as the transaction identifier and the list of all the inputs and
outputs. In Bitcoin, the inputs of the transaction do not specify
how many bitcoins are spent. Each output of the transaction can
only be used once as an input of another transition over its life
cycle. The output is categorized as either the Unspent Transaction
Output (UTXO) if it has not been referenced by a subsequent
transaction or the Spent Transaction Output (STXO) otherwise. In
a standard Bitcoin transaction, the total amount of all the inputs
must be at least as much as the total amount of all the outputs.
They are not necessary to be equal. If the summation of all the
input values is greater than the summation of all the output
values, the difference is implicitly assigned as the transaction fee
to the miner who validates the block. Transactions are collected
in a block by Bitcoin miners through solving a computationally
difficult puzzle. The puzzle is to calculate a hash value of the block
and to adjust a nonce so that the hash value is lower than or equal
to a threshold. Once a miner finds such a nonce, the block along
with the respective nonce will be distributed in the network, and
all the participants will update their ledgers locally.

The transactions in the ledger are linked over time, and all the
transactions are broadcasted to all the participants and stored in
their local ledgers. Given the public Bitcoin ledger, we can easily

trace any transaction. The identities in Bitcoin are private keys.

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

E
w
k
e
t
a
O
i
g
p
a
w
e

a
c
i
B
t
t

v
i

f
r
u
e

T
W
a
a
s
a
t
B
B
n
t
e
a
i
n
t

i
c
t
e
b
1
a
2
m
t
h
t
t
a
a
t
b
d
m
t

Fig. 1. The structure of the Bitcoin ledger.

ach private key generates a public key for public identification
hich is associated with some Bitcoin addresses. These addresses
eep user anonymity since they contain no links to the real-world
ntities. A Bitcoin address is also called a pseudonym. According
o Nakamoto and Bitcoin [1], the pseudonym mechanism guar-
ntees complete anonymity under the following two conditions.
ne is that the pseudonym has no connection to the real world
dentities, and the other is that a new pseudonym should be
enerated for each new transaction. However, in reality, only few
eople follow these two rules [8]. In our experiment, by lever-
ging the information extracted from the Bitcoin transactions,
e can reveal the activities among the Bitcoin addresses and
ventually de-anonymize the Bitcoin users.
In contrast to Ethereum, Bitcoin transactions on the blockchain

re only used for accounting without storing codes or running
ontracts [11]. Therefore, the data structure of the Bitcoin ledger
s simple. Fig. 1 shows the structure of the Bitcoin ledger. The
itcoin ledger uses a Merkle tree to verify transactions and ensure
hat transaction information is not tampered with. The Merkle
ree is recorded in the block body. H represents Hash-256 en-
cryption algorithm. The root hash value of the Merkle tree is
stored in MerkleRoothash of the block header. PrevBlockhash in
the block header records the hash value of the previous block
header. The leaf nodes of the Merkle tree are transactions. There
may be many inputs and outputs in one transaction. Vin_sz and
out_sz respectively record the number of inputs and outputs
n this transaction. prev_out in the figure represents one of the
input of the transaction. According to the Bitcoin protocol, the
inputs of this transaction comes from the outputs of the previous
transaction. Script is used to unlock the output of the previous
transaction. Hash values and script bring no information in the
eature construction, so we drop them from the raw data. The
est of the data is transformed into structured data. Finally, we
se feature engineering methods to generate a feature vector for
ach Bitcoin address.
3

2.2. De-anonymization in Bitcoin

Decentralization is the fundamental feature of Bitcoin. The
Bitcoin protocol is mainly designed to avoid double-spending
attacks on the premise of decentralization. In fact, anonymity
is not the main issue considered in the design of Bitcoin. The
complete anonymity of Bitcoin is not technically guaranteed but
depends on the transaction behaviors of traders. In contrast to
other online payment systems, Bitcoin traders can use Bitcoin
address to trade directly without verifying user identity informa-
tion, such as ID cards, SMS verification codes, or face recognition.
Therefore, Bitcoin addresses have no link to the real traders, and
a trader may own numerous Bitcoin addresses. This anonymity of
Bitcoin is designed to protect limited user privacy. Even though
all the transaction information is disclosed to the public, we are
not able to know the purpose and identity of traders. But, Bitcoin’s
anonymity mechanism is a double-edged sword. It attracts a large
number of users while it also makes the Bitcoin be a tool of
circulating currency for illegal activities, such as ransomware,
laundering, thefts, and scams [2–4,12]. People can freely disclose
their Bitcoin addresses for illegal transactions because no real-
world identity will be exposed to others. However, a healthy
cryptocurrency system needs to support technical legal investi-
gations to ensure the safety and legality of transactions. We need
to de-anonymize the Bitcoin to assist in tracking and verifying
those illegal transactions. Currently, there are many methods to
identify Bitcoin users’ real identities, such as network analysis,
address clustering, and graph analysis.

Network analysis. Bitcoin is a decentralized digital currency.
ransactions are widely transmitted via a peer-to-peer network.
hen a node transmits a transaction, the Bitcoin address in the

pplication layer and the IP address in the network layer will
ppear in the same data packet. We can use specific techniques,
uch as IP address sniffing, to obtain the mapping between Bitcoin
ddresses and IP addresses. Koshy et al. [13] develop heuristics
o identify three relay patterns for network analysis which maps
itcoin addresses to IP addresses. Mastan and Paul [14] use a
itcoin session graph to organize the block requests made by the
odes. Even if the nodes connect to the Bitcoin network over Tor,
he method still links the sessions of unreachable nodes. Juhász
t al. [15] propose a probabilistic approach that links Bitcoin
ddresses and transactions with the originator IP addresses. They
nstall more than one hundred modified Bitcoin clients in the
etwork to observe messages and successfully identify several
housand Bitcoin clients.

Address clustering. Some studies cluster Bitcoin addresses
nto distinct entities. An entity is either a Bitcoin user or a Bitcoin
ommunity. We can trace the Bitcoin transaction and detect
he transactions by analyzing the flow of bitcoins among these
ntities [12,16]. Furthermore, Bitcoin users or communities can
e identified by combining entities with offline information [17,
8]. There are many Bitcoin address clustering methods, such
s heuristic clustering [16,19,20], data mining methods [2,21–
4] and deep learning methods [8,25,26]. In heuristic clustering
ethods, the authors propose different heuristic rules according

o the Bitcoin transactions characteristics, such as the multi-input
euristic rule. That is, multiple inputs of a transaction may belong
o the same entity, and a Bitcoin address may appear in multiple
ransactions. Under this assumption, multi-input heuristic rules
re able to cluster Bitcoin addresses and the clustering accuracy
chieves almost 70%. Heuristic clustering mainly relies on the
ransaction behavior of traders and clusters Bitcoin addresses
ased on the topological structure of the transaction graph. In
ata mining methods, the authors usually use feature engineering
ethods to extract feature vectors for each Bitcoin address. Then,

hey train a classifier such as decision trees, logistic regression, or

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

r
m
t
t
t

l
t
a
r
t
c
s
a
t

h
t
u
d
d
l
l
p
p
d
s
t
w

andom forests to classify Bitcoin addresses. However, these data
ining methods usually need a lot of transaction information

o generate address feature vectors, and it is hard to discover
he relationship among Bitcoin addresses because they ignore the
opological structure of the transaction graph.

Graph analysis. Based on the relationship between the trans-
actions and addresses, we can construct an address-transaction
graph. Each edge in the graph links a Bitcoin address to a Bit-
coin transaction. Therefore, the address-transaction graph is bi-
partite. The bipartite graph can be further converted into an
address graph and a transaction graph. The address graph de-
scribes the connections between Bitcoin addresses and reflects
intimacy among different addresses. The transaction graph uses
the Bitcoin addresses as the edges to describe the connection
between transactions, reflecting the input–output relationship of
the transactions and the flow path of bitcoins. We can also obtain
an entity graph with address clustering. The entity graph pro-
vides a clearer picture of the flow of bitcoins between addresses,
which reveals the behavior and purpose of transactions between
entities. Ranshous et al. [27] introduce the idea of motifs in the
directed address-transaction graph. They propose a particular 2-
motif and statistical properties of addresses to identify exchange
addresses. Ron and Shamir [6] analyze the properties of the
transaction graph composed of the full transaction history and
answer a series of questions about user behaviors. Chen et al.
[28] divide the transactions of Mt.Gox Bitcoin exchange into three
categories and construct them into three graphs. They analyze
the graphs with Singular Value Decomposition (SVD) and discover
plenty of market manipulation patterns.

2.3. Community detection

Community detection is one of the major topics in data min-
ing. It can be used to study the structural characteristics in the
graph, such as functional modules of protein–protein interaction
networks [29] and groups of people with similar interests in
social networks [30]. Graph is one of the popular data structure
that is widely used to model the spatial relationship between
objects. In real-world graph problems, in addition to the topolog-
ical structure, nodes are usually associated with node attributes,
such as the user profiles in the social networks and the gene
functional information in the biological networks. Node attributes
can be added to the graph to form an attribute graph. Community
detection on attribute graphs aims to group nodes with com-
mon properties into a community. However, most community
detection methods only focus on either graph topology or node
attributes. Examples of topological structure-based methods in-
clude modularity [31], spectral clustering [32] and non-negative
matrix factorization [33], while node attribute-based methods
include k-SNAP [34].

The topological structure and node attributes are both key
information for the success of community detection. There is
no evidence that topological structure and node attributes share
the same characteristics in any case as illustrated in [35]. Node
attributes may also unexpectedly mismatch the topology. Besides,
different types of attributes usually have different degrees of
contribution to the community detection algorithm. To solve the
above problems, the input graph of the community detection
algorithm should include both topological structure and node
information so that the node information is able to propagate
across the graph, which is one of the fundamental factors in the
social networks [36]. In such a graph, the node at one end of
the edge can propagate its attributes to the other end. The whole
process describes as follows. A node collects the attributes from
its neighboring nodes and merges them with its own attributes
to produce the new attributes, and then propagates them to its
4

neighbors. After several iterations, nodes with similar attributes
tend to be closer and can be grouped into the same community.
In attribute propagation, edges are the medium of the network.
Disconnected nodes are not able to propagate attributes to others.
In our experiment, we build an attribute graph considering both
topological structure and node attributes.

2.4. Feature engineering

Feature engineering is an essential step for the preprocesses
of unstructured data. Data and features determine the upper
bound of prediction performance, while models and algorithms
are just the tools to approach that bound. In Bitcoin applications,
the main problem of feature engineering is to deal with the
huge size Bitcoin ledger and construct useful features for each
Bitcoin address. Jourdan et al. [9] study address-specific features
such as the total amount of received bitcoins, the number of
input transactions, temporal features such as week and month
information, and motif features. Toyoda et al. [24] extract eight
transaction characteristics of Bitcoin addresses including trans-
action frequency and the ratio of received transactions to all
transactions. Lin et al. [23] classify all the Bitcoin transaction
information into three types of features, basic statistics, extra
statistics, and transaction moments. However, these feature en-
gineering methods need to manually determine what attributes
should be selected according to the domain knowledge. Further-
more, some latent features may be ignored by the experts. In this
paper, we propose a feature engineering pipeline to automatically
extract important features among all the transaction information
without making any manual choice.

2.5. Goals and challenges

Goals. To achieve Bitcoin de-anonymization, we aim to estab-
ish a relationship between the Bitcoin pseudonym and user iden-
ification such as user profiles or behaviors. We cluster the Bitcoin
ddresses with similar behaviors according to the transactions
ecorded in the public ledger. If one of the Bitcoin address belongs
o illegal activities, such as ransomware, we are able to find a
luster of all the illegal addresses so that we can trace malicious
ources. In this paper, our goal is to design an accurate Bitcoin
ddress classifier to group nodes with similar behaviors into
he same community and further de-anonymize Bitcoin users.

Challenges. Recently, the ledger size of Bitcoin transactions
as become larger and larger and is almost 300 GB now. It is
ime-consuming to construct the transaction graph and extract
seful features for all the Bitcoin address. Furthermore, the tra-
itional community detection algorithms are not able to work
irectly on the address-transaction graph. Meanwhile, due to the
ack of labeled Bitcoin samples, the performance of supervised
earning models are unsatisfactory. Motivated by the information
ropagation theory, we propose an adaptive weighted attribute
ropagation enhanced community detection model for Bitcoin
e-anonymization. Our model not only considers the topological
tructures of Bitcoin address and transactions but also includes
he node attributes propagation across the graph. In summary,
e aim to address the following challenges:

• How to efficiently convert the massive Bitcoin transaction
data into a graph?

• What node attributes should be chosen to describe a Bitcoin
address for the address classification problem?

• How to construct an attribute graph that can be applied
to community detection considering the bipartite address-
transaction graph is not suitable for community detection?

• How to combine topological structure and node attributes
together considering node attributes sometimes mismatch
with topology and how to evaluate the contributions of dif-
ferent node attributes for community detection algorithm?

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

3

T
f
F

3

B
t
T
f
g
p
a
O

3

l
I
a
[

Fig. 2. An overview of AWAP.
d
u
c
B

t
t
T
e
N
t
k
e
c

g
o
E
m
i
n
t
B
a
t
a
c
i
a
o

3

g
E
u
r

A

. The AWAP model

In this section, we first give an overview of the AWAP model.
hen we present in detail its components of transaction parser,
eature extraction, graph construction, and community detection.
inally, we analyze the time complexity of our model.

.1. Model overview

In Fig. 2, AWAP starts with collecting transaction data from the
itcoin ledger. After applying the transaction parser, we obtain
he Bitcoin address attributes and the address-transaction graph.
hen, we pre-process the Bitcoin address attributes with the
eature engineering pipeline and convert the address-transaction
raph to the Bitcoin address graph. Finally, we combine the
re-processed address attributes and the address graph into an
ttribute graph as the inputs of the community detection model.
ur AWAP model has four components:

• Transaction parser. We parser raw transactions into struc-
tured data and extract some transaction information as node
attributes, such as spent, value, size, weight et al. We also
build some small bipartite address-transaction graph by
linking Bitcoin addresses with transactions.

• Graph construction. We convert the bipartite graph into an
address graph. For each transaction node Ti, we delete the
transaction node Ti and all the edges connected to it, and
then we fully connect all the input addresses and output
addresses of Transaction Ti. We use an adjacency matrix to
represent the undirected address graph.

• Feature extraction. We implement a feature engineering
pipeline to generate a feature vector for each Bitcoin address
from the transaction data. The pipeline consists of data
preparation and normalization, feature combination, feature
selection, dimensionality reduction, and feature discretiza-
tion.

• Community detection. We combine the address graph and
the feature vectors of addresses together to form an at-
tribute graph as the input of the community detection algo-
rithm. Our algorithm clusters nodes with similar properties
into a community by propagating node attributes through-
out the graph. We also use a voting mechanism to adjust the
attribute weights in each iteration.

.2. Transaction parser

Nowadays, the Bitcoin ledger size has become larger and
arger, almost 300 Gigabytes (GB), and still grows over time.
n order to process the ledger, the transaction parser needs to
nalyze and organize the transactions efficiently. Ron and Shamir
6] employ a forked version of bitcointools to obtain transaction
5

ata and use LevelDB to index the full ledger. Fleder et al. [37]
tilize Armory to parse transaction data on a full-featured Bitcoin
lient. Kalodner et al. [38] design a software platform named
lockSci to parse and analyze the blockchain.
To collect the data efficiently, we use the blockchain.info API

o implement the parser. The API retrieves the transactions from
he massive transaction history and returns data in JSON format.
hen, we convert the JSON format into vectors. In such a way,
ach Bitcoin transaction becomes a vector of node attributes.
ote that the vector has variable length because the number of
ransactions per address is different. For each transaction, we
eep almost all transaction information, such as value, size, weight,
t al. excluding the hash value that is of no help for the feature
onstruction.
In this step, we construct some small address transaction

raphs. For each transaction, we connect it with all the input and
utput addresses. Each address links to at least one transaction.
ach transaction may connect with multiple input addresses and
ultiple output addresses to form a small bipartite graph. There

s no direct link among address nodes or among transaction
odes. We use the same address in different transactions as
he medium and splice these binary graphs to form a complete
itcoin address transaction graph. If Bitcoin users use a unique
ddress for each transaction, each address only appears in one
ransaction. Then, the small bipartite graph cannot be spliced into
large address transaction graph. From the perspective of graph
onstruction, this kind of bipartite graph is more secure because
t has no connection to the other transactions. Thus, using a new
ddress for each transaction can greatly enhance the anonymity
f Bitcoin.

.3. Graph construction

We use a 2-tuple data structure to efficiently store an address
raph G = (V , E), where V = {vi|i ∈ [1,N]} is the set of vertices,
= {(vi, vj)|vi, vj ∈ V , i ̸= j} is the set of edges. The graph is an
ndirected graph. The adjacency matrix A of the graph G can be
epresented as:

i,j =

{
1, if (vi, vj) ∈ E, or (vj, vi) ∈ E
0, otherwise

(1)

As shown in the top left part of Fig. 3, we construct the bi-
partite address-transactions graph in the transaction parser step,
where Ai represents the address node i and Tj represents the
transaction node j. The bipartite graph shows the relationship
between addresses and transactions, but it cannot be applied
directly to the community detection algorithm. Because for the
community detection task, all the vertices in the graph should
be of the same node type. Thus, we convert the bipartite graph
to an address graph which only keeps the user address nodes

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

T
T

Fig. 3. The construction process of a community graph.
a
o

S

able 1
ransaction information.
Features Description

Weight Block weight for segregated witness.
block_height Block height of the transaction.
lock_time Transaction time lock.
Result The income and expenses of the address
Size The size of transactions.
Time Transaction time.
Vin_sz The number of transaction inputs.
Vout_sz The number of transaction outputs.
Sum_input Bitcoins for all input addresses in one transaction.
Aver_input Average input bitcoins per address.
Max_input Maximum input bitcoins.
Min_input Minimum input bitcoins.
Sum_output Bitcoins for all output addresses in one transaction.
Aver_output Average output bitcoins per address.
Max_output Maximum output bitcoins.
Min_output Minimum output bitcoins.

shown in the bottom part of Fig. 3. In reality, multiple inputs
of a transaction may belong to the same Bitcoin user, while
multiple output addresses may be of the same entity category,
such as Exchange, Gambling, Mining, Service, Darknet. We expect
that the address graph is able to describe these relationships as
well. To construct the address graph, for each transaction node
Tj, we delete the node Tj and all the edges connect with it and
add an edge for each pair of (input, output). Then, we merge
these small address graphs into a large address graph. Many
publications show that the direction of the edges between the
vertices is not important as long as the edges can propagate the
information between neighboring vertices. Following the above
steps, we convert the directed bipartite graph into the undirected
graph.

In Bitcoin, there is no transaction between the same addresses,
and the diagonal elements of the adjacency matrix are all 0.
In order to facilitate the subsequent attribute propagation, we
further express the adjacency matrix A of the graph G as:

Ai,j =

{
1, if (vi, vj) ∈ E, or (vj, vi) ∈ E, or i = j
0, otherwise

(2)

3.4. Features extraction

In this part, we use feature engineering techniques to process
the above variable-length attribute vector and obtain the feature
vector for each user address. Our feature engineering pipeline
consists of five parts: data preparing and normalization, feature
combination, feature selection, dimensionality reduction, and fea-
ture discretization. We show the process of feature extraction in

the upper middle part of Fig. 2.

6

Data preparation and normalization. In the parser step, the
transaction attributes used in the experiments are shown in Ta-
ble 1. Because the number of input addresses and output ad-
dresses of each transaction are different, we calculate the sum,
verage, maximum, and minimum values of all the inputs and
utputs:

um_input =

Nin∑
i=1

input_valuei (3)

Aver_input =
Sum_input

Nin
(4)

Max_input = max
1≤i≤Nin

input_valuei (5)

Min_input = min
1≤i≤Nin

input_valuei (6)

Here Nin represents the total number of input addresses in a
transaction and input_valuei represents the attribute of the ith
address. Each transaction node contains 16 attributes. When con-
verting the address-transaction graph to the address graph, we
need to define the attributes of address nodes. Each Bitcoin ad-
dress nodes may appear in multiple transactions. Therefore, we
calculate the average, maximum and minimum values of attributes
for all the transactions that are associated with this address.
Finally, we obtain 48 attributes for each address. Here is an
example of calculating the address attributes for the transaction
feature Min_input:

Aver_Min_input =

∑Ntx
i=1 Min_input

Ntx
(7)

Max_Min_input = max
1≤i≤Ntx

Min_inputi (8)

Min_Min_input = min
1≤i≤Ntx

Min_inputi (9)

Here Ntx represents the total number of transactions that are
associated with the current address. Min_inputi represents the
Min_input of the ith transaction obtained from Eq. (6). Adding
the four more address attributes including N_tx, BTC_received,
BTC_sent , and Final_balance provided by the API, we finally con-
struct a 52-dimensional feature vector for each address. We nor-
malize all the address attributes into the same range with Z-score
and MinMax functions.

Feature combination. Feature combination is one of the data
pre-processing tools that create new features. It is able to add

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

t
p
d
v
t

r
p
h
c
a
w
e
m

H
σ

f
a
s
v

b
W
v
f

[

G
t
n
a

3

t
A
a

w

p
e
t
a

P

t
a
a
G
r
m

G

w
d
A
n
m
v
t
p

G

a
p
a
N
c

µ

he non-linearity into the feature vector. Shao et al. [8] use a
olynomial feature combination when constructing Bitcoin ad-
ress features. Similarly, for each feature, we add the squared
alue and square root value into the feature vector. For example,
he feature Max_Min_input is able to generate two new features
√
Max_Min_input and (Max_Min_input)2.
Feature selection. Feature selection is such a tool that helps us

emove redundant or irrelevant features. It may also improve the
erformance and reduce the runtime because we only keep the
ighly important features. Feature selection methods are mainly
lassified into two categories: statistical-based feature selection
nd model-based feature selection. In the model-based approach,
e pre-train a decision tree or a logistic regression model to
valuate the importance of each feature. In the statistical-based
ethods, we use the Pearson coefficient and hypothesis test p-

value to select features. Here is the equation of the Pearson
coefficient:

PearsonX,Y =
cov(X, Y)

σXσY
(10)

ere X represents a feature, Y represents the dependent variable,
is the standard deviation, and cov is covariance. Pearson coef-

icient reflects the degree of linear correlation between feature X
nd dependent variable Y . The closer the coefficient is to 1, the
tronger the correlation between the feature X and the dependent
ariable Y . In the hypothesis test, we use the chi-square test to

compute the p-value. The chi-square value expresses the inde-
pendence of two variables. The larger the chi-square value is, the
smaller the p-value is, the weaker the independence between the
feature X and the dependent variable Y .

Dimensionality reduction. We use Principal Components
Analysis (PCA) to reduce the dimensionality of the feature vector.
In the above step, we have already used the feature selection to
reduce the data dimensionality. We use PCA because PCA projects
a dataset with some related features onto a coordinate system to
generate a new representation of fewer related features. These
new related features are called principal components. PCA creates
fewer features but has a much stronger representation ability by
maximizing the data variance. Therefore, the new representation
is usually more effective to identify patterns comparing to the
original feature representation.

Feature discretization. Discretization is the process of trans-
forming continuous variables into discrete variables by using a set
of contiguous intervals. To speed up the community detection, we
need data discretization methods to convert numerical features
into binary features. Besides, data discretization can make fea-
tures obtain exponential representation capabilities. If we have
an n-dimensional continuous vector, we will get 2n feature com-
inations even though we use the simplest feature binarization.
e use a decision tree to determine the boundary of each feature

alue, map the feature value to the corresponding interval, and
inally complete the data discretization.

We combine all the feature vectors into a matrix F , F =

f 1, f 2, . . . , f N]
T . Specifically, f i is the feature vector of vertices i.

= (V , E, F) denotes the attribute graph. In the experiment, we
est all the combinations of different feature engineering tech-
iques and select the best approach based on their classification
ccuracy.

.5. Community detection

In this subsection, we introduce our adaptive weighted at-
ribute propagation enhanced community detection algorithm.
n attribute graph with both topological structure and node
ttributes can be represent by a graph G = (V , E, F), where V is

the set of vertices, E is the set of edges and F is the set of feature
7

vectors, F = [f 1, f 2, . . . , f N]
T . f i is a feature vector associated

with vertex i. Given the graph G, our goal is to cluster all the
vertices into K different communities. To achieve that, we utilize
a random walk based attribute propagation algorithm.

Firstly, we introduce the process of attribute propagation.
Considering a random walk on the attribute graph G, given an
arbitrary pair of vertices (i, j), the one-step transition probability
Pij denotes the probability that a walk starts from vertex i at t = 0
and stops to vertex j at t = 1. We can further represents the Pij
as follows:

Pij = Pt=1|0(j|i) =
Aij∑N
l=1 Ail

, (11)

here A is the adjacency matrix of graph G and Aij is the corre-
sponding value in the adjacency matrix A at row i and column j.
N is the total number of vertices in the graph. In the adjacency
graph, Aij equals to 1 if and only if vertex i and vertex j are
neighbors, otherwise Aij equals to 0. The denominator

∑N
l=1 Ail

equals to the total number of vertex i’s neighbors. From Eq. (11),
we can conclude that the more neighbors the vertex i has, the
larger the denominator is and the smaller the one step transition
probability is. In real application, we treat step t as a random
variable from [0, ∞) and assume t follows a geometric distribu-
tion and the probability of P(t = s) = λ(1 − λ)s, where s is an
integer in the range of [0, ∞) and λ is a parameter in the range of
(0, 1). Furthermore, the expectation of transition probability from
vertex i to vertex j is defined as:

Pt|0(j|i) =

∞∑
s=0

Ps|0(j|i) · P(t = s) =

∞∑
s=0

Ps|0(j|i) · λ(1 − λ)s (12)

In Eq. (13), the probability that vertex j receiving attribute
ropagation from vertex i can be calculated as the ratio of the
xpectation of transition probability from vertex i to vertex j to
he summation of the expectation of transition probability from
ny vertex j’s reachable vertex l to vertex j.

0|t(i|j) =
Pt|0(j|i)∑N
l=1 Pt|0(j|l)

(13)

Based on Eq. (13), if many vertices are able to reach vertex j,
he probability of vertex j receiving the attribute propagation of
particular vertex i will be low. A matrix R is utilized to store
ll the attribute propagation probabilities where Rij = P0|t(i|j).
iven feature matrix F and R, we can calculate the total attributes
eceived by vertex j as g j =

∑N
i=1 f iRij. The attribute propagation

atrix G can be written in matrix form:

= FR (14)

As mentioned in Section 2, node attributes may mismatch
ith topology and different types of attributes have different
egrees of contribution to the results of community detection.
n adaptive weight matrix W is used to set the weight for each
ode attribute according to their contribution. W is a diagonal
atrix that Wii = wi, ∀i ∈ [1,m], where m is the size of feature
ectors. We initialize w1, . . . , wm to 1.0, which indicates that all
he attributes are equally important. Thus, the weighted attribute
ropagation matrix G is represented as:

= WFR (15)

Specified in Liu et al. [36], the key element of attribute prop-
gation is the assumption of community consistency. When the
ropagation reaches stability, vertices in the same community
re likely to receive the same amount of attribute propagation.
ow, we define µk as the expected attribute propagation for the
ommunity Ck.

=

∑m
j=1 g j

, (16)
k m

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

w
m
i
c
t
r
c

p

E

c
i
d
s

a

d

t
e
c
f

µ

Y

m
T
s
w
a

v

∆

w

O

1
1

c
s
l
p
i
B
o
c
n
K
t
c
i

4

m
t
c
a
f

4

m
i
A
t
c
s
e
w
e

here g j denotes the attribute received by vertex j from com-
unity Ck, ∀j ∈ [1,m] and m is the total number of vertices

n the community Ck. The expected attribute propagation of the
ommunity can be obtained by averaging the attribute propaga-
ion of all vertices in this community. We use the matrix Y to
epresent the belonging relationship between the vertices and the
ommunities. Specifically, Yik = 1 indicates that vertex i belongs
to community Ck. E[g j] represents the expectation of attribute
ropagation received by vertex j. K is the number of communities.

[g j] =

K∑
k=1

µk · Yjk, where Yjk =

{
1, j ∈ Ck

0, j /∈ Ck
(17)

In our AWAP model, a vertex j can only be assigned to one
ommunity if all the attribute propagation received by vertex j
s solely from the vertices in its community. Then, community
etection based on attribute propagation can be obtained by
olving the following optimization problem:

rgmin
Y ,µk

N∑
i=1

∥ g i − E[g i] ∥
2
2 (18)

To solve the above optimization function, we minimize the
ifference between the actual g i and expected g i. Given the

dependent variable Y , we are able to solve µk with Eq. (16):

µk =

∑N
i=1 g i · Yik∑N

j=1 Yjk
(19)

Taking Eqs. (17) and (18), we can solve matrix Y by calculating
he first K eigenvectors of matrix R⊤F⊤W⊤WFR according to Xu
t al. [39]. After initializing the matrix Y, we use Eq. (19) to
alculate µk . During each iteration, we update µk and Y as
ollows:

k
t+1

=

∑N
i=1 g i · Y t

ik∑N
j=1 Y

t
jk

(20)

t+1
ik =

{
1, ∀m ∈ [1, K], ∥µk

t
− g i∥ ≤ ∥µm

t
− g i∥

0, otherwise
(21)

Finally, a voting mechanism similar to Zhou et al. [40] is
utilized to adjust attribute weights. Let wt

1, . . . , w
t
m be weights

of attributes at1, . . . , a
t
m in the tth iteration, where m is the size

of the feature vector. The weight of attribute ai in the (t + 1)th
iteration is computed as:

wi
t+1

=
1
2
(wi

t
+ ∆wi

t) (22)

We can calculate ∆wt
i with the voting mechanism. If vertices

in the same community share the same attribute value ai, it
eans attribute ai can reflect the community characteristics.
hen the weight wi of ai should increase, while if vertices in the
ame community have a random distribution on attribute ai, the
eight wi should decrease. The voting process can be computed
s:

otei(vp, vq) =

{
1, if vp, vq share the same value on ai
0, otherwise

(23)

Based on Eq. (23), ∆wi
t is calculated as

wi
t
=

∑K
j=1

∑
v∈Vj

votei(cj, v)
1
m

∑m
p=1

∑K
j=1

∑
v∈Vj

votep(cj, v)
, (24)

here Vj denotes the set of vertices in community Cj, cj de-
notes a virtual vertex with expectation attributes of community
 d

8

Cj. The algorithm of community detection on AWAP model is
summarized in Algorithm 1.

Algorithm 1 Adaptive Weighted Attribute Propagation

Input: adjacency matrix A; feature matrix F ; number of clusters
K ; parameter λ;

utput: detected communities indicated by Y ;
1: Initialize w1 = w2 = ... = wm = 1.0;
2: Calculate R matrix with random walk, according to equation

(13);
3: Calculate G based on equation (15);
4: Calculate the first K eigenvectors and initialize Y ;
5: Initialize µ with equation (19);
6: while not converged do
7: Update Y with µ and W based on equation (21);
8: Update µ with Y based on equation (20);
9: Update weights w1, w2, ..., wm based on equation (22);
0: end while
1: Return Y ;

Complexity analysis. With the growth of ledger size in Bit-
oin, community detection has become a time consuming and
pace consuming process. In the AWAP framework, there are a
arge number of matrix operations. The most time consuming
rocess is division operation in Eq. (11) and matrix multiplication
n Eq. (15). Their time complexity is O(n2) and O(n3) respectively.
esides, we have to store some intermediate result of matrices
r vectors for following-up computation in Eq. (15), and its space
omplexity is O(n2). The total time complexity of AWAP is O(2n3

+
2
+ (m+K +1)n) and the total space complexity is O(3n2

+Kn+

+ m), where n, m and K are respectively the size of samples,
he size of features, and the size of clusters. Furthermore, parallel
omputing is able to speed up the computational process, which
s beyond the scope of this paper.

. Evaluation

In this section, we demonstrate the performance of our AWAP
odel on Bitcoin address classification and community detec-

ion. We choose seven state-of-the-art Bitcoin address classifi-
ation methods and seven state-of-the-art community detection
lgorithms as the baselines. The evaluation process studies the
ollowing questions:

• Is AWAP model effective in Bitcoin address classification
compared with state-of-the-art classifiers?

• Does AWAP model outperform other state-of-the-art algo-
rithms in the community detection task?

• How does feature engineering influence AWAP model’s per-
formance?

.1. Experimental setup

Testbed. We develop the AWAP model on a Windows 10
achine with Intel Core 2.20 GHz CPUs and 16 GB RAM. We

mplement the transaction parser in Python 3.7.2 and implement
WAP model in Matlab. We collect 300 GB of raw transactions
o test the traceability of the ransomware address in Bitcoin. To
ompare the performance between the AWAP model and other
tate-of-the-art methods, we select a labeled Bitcoin dataset to
valuate the address classification performance [9]. Furthermore,
e use two standard citation datasets (Cora and Citeseer) to
valuate community detection performance. The details of the

atasets are listed in Table 2.

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

T
T

M
o

4

m
c
a

i
s
f
D
m
A
b
a
4
A
3
t
o
p
p
a
t
f

f
b
g
a
g
t
a
B
i
i
n
t
a
t
d
o
c
t

s
w
a

able 2
he experimental dataset used to evaluate our model.
Dataset Data size #Item Description

Cora 7.52 MB N/A

Node 2708
Link 5294
Dimension 1433
Class 7

CiteSeer 23.5 MB N/A

Node 3312
Link 4732
Dimension 3703
Class 6

Data(I) 20.9 GB 59 836

Exchange 11808
Gambling 11923
DarkNet 12016
Mining 12042
Service 12047

Data(II) N/A 10 000

Exchange 2000
Gambling 2000
DarkNet 2000
Mining 2000
Service 2000

Data(III) N/A 7882 N/A N/A

Measured metrics. F-score, Jaccard similarity and Normalized
utual Information (NMI) are used to evaluate the performance
f community classification. F-score mainly describes the accuracy

of detected communities, Jaccard is a statistical method used for
comparing the similarity of detected communities and the ground
truth, and NMI offers an entropy measure of the overall matching.
These metrics are formulated as follows:

Fscore(C, C∗) =

∑
Ci∈C

|Ci|∑
Cj∈C

|Cj|
max
C∗
j ∈C∗

Fscore(Ci, C∗

j) (25)

Jac(C, C∗) =

∑
C∗
j ∈C∗

maxCi∈C Jac(Ci, C∗

j)

2|C∗|

+

∑
Ci∈C

maxC∗
i ∈C∗ Jac(Ci, C∗

j)

2|C |

(26)

NMI(C, C∗) =

∑
Ci,C∗

j

p(Ci, C∗

J)(log p(Ci, C∗

j)

−log p(Ci)p(Cj))/max(H(C),H(C∗))

(27)

Here C∗ is the real community and the C is the predicted commu-
nity. H(C) is the entropy of the community C . Accuracy, Precision
and F1_score are used to evaluate the performance of Bitcoin ad-
dress classification. Accuracy is the proportion of correct predic-
tions to total predictions. Precision is the proportion of positive
predictions to the total positive predictions. Recall represents a
measure of the completeness of a classifier. F1_score is the harmonic
mean of Precision and Recall. All the above six metrics range
from [0, 1]. The larger the metric is, the higher performance
the classifier achieves. F1_score can be computed with the formula
below:

F1_score = 2 ·
Precision · Recall
Precision + Recall

(28)

.2. Model performance

In this part, we report and discuss the performance of our
odel on both the Bitcoin address classification task and the
ommunity detection task. We also analyze how the parameters
nd weight distribution influence the model performance.
9

Table 3
Performance comparison on Bitcoin address classification task.
Algorithm Accuracy Precision F1_score
Logistic regression 0.88 0.89 0.88
LightGBM 0.90 0.91 0.90
Random forest 0.90 0.90 0.90
Decision tree 0.86 0.88 0.86
XGBoost 0.80 0.81 0.81
BAGC 0.55 0.47 0.50
CP 0.89 0.71 0.79

AWAP 0.95 0.88 0.92

Table 4
Bitcoin address classification results.
Category Accuracy Precision F1_score
Exchange 0.96 0.95 0.90
Gambling 0.98 0.95 0.97
DarkNet 0.93 0.98 0.77
Mining 0.99 0.99 0.99
Service 0.90 0.68 0.93

Address classification performance. In this task, we use
seven state-of-the-art community detection algorithms, such as
BAGC [41] and CP [36], to classify Bitcoin addresses, and summa-
rize the accuracy, precision, and F1_score of address classification
n Table 3. To prove that our model can effectively work on a
mall sub-graph of the whole Bitcoin dataset, we only select the
irst 2000 addresses for each category from the labeled dataset
ata(I) to form the dataset Data(II). The results show that our
ethod has higher accuracy compared to all the other methods.
WAP increases accuracy by 5% compared to Random Forest, and
y 40% compared to BAGC. Regarding F1_score, AWAP outperforms
ll the others by 2% the minimum (compared to LightGBM) to
2% the maximum (compared to BAGC). Regarding precision,
WAP is inferior to LightGBM and Logistic Regression by about
%. According to their definitions, accuracy reflects the ratio of
he number of correctly predicted samples to the total number
f predictions, regardless of whether the predicted samples are
ositive or negative, while precision only focuses on the data
oints that are predicted to be positive. Thus, the reason why
ccuracy is higher while precision is slightly lower may be because
he classification of most addresses is correct, but some samples
rom one of categories are misclassified.

We visualize the results of Bitcoin address classification to
urther analyze the experiment results. The comparison results
etween prediction and the ground truth are shown in Fig. 4. Our
raph visualization is not fixed so that nodes in the two graphs
re not one-to-one spatial correspondence. Each node in the
raph represents a Bitcoin address, and the edge represents that
wo end nodes connect with the same transaction. They can be
ny one of the addresses of the inputs/outputs of the transaction.
y observing the visualization results shown in Fig. 4, our model
s able to accurately classify most of the nodes. The nodes connect
n the graph are more likely to share some node attributes. The
odes connected in the topology are more likely to belong to
he same community, but this is not absolute. The difference in
ttributes of each address may still divide the nodes connected by
he topology into different communities. So the address attribute
etermines the type of community, and AWAP can make good use
f topology and node attributes for classification. Our proposed
ommunity detection model further makes a prediction based on
he propagation of node attributes.

The accuracy, precision, and F1_score of the five address types are
ummarized in Table 4. After checking the misclassified samples,
e find that some DarkNet addresses are misclassified to Service
ddresses, resulting in a decrease in the accuracy of DarkNet

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

a
c
m
o
a
s

s
a
a
F
m
r

l
t
t
w
o
t
a
t
t
W
m
t
I
a
t
t
p

e
a
t
a
λ

t
h
g
a

1
i
t
s
W
S
t
t
s

Fig. 4. Comparison between AWAP and ground truth on Bitcoin address classification.
T
m

nd Service, and precision of Service. We can make the same
onclusion from Fig. 4. Some DarkNet nodes marked with blue are
isclassified to Service nodes marked with red. In other words,
ur model recognizes some of the DarkNet addresses as Service
ddresses since the node attributes of these two types have high
imilarity.
Community detection performance. In this task, we choose

even state-of-the-art community detection methods as baselines
nd compare AWAP model performance with them on Citeseer
nd Cora datasets. These datasets are summarized in Table 2.
-score, Jaccard similarity and NMI are used to evaluate the perfor-
ance of community detection. We summarize the comparison

esults in Table 5.
The results show that AWAP model outperforms the base-

ines. From Table 5, the algorithms that comprehensively consider
he topology and node attributes are superior to the algorithms
hat only consider the topology. Dynamically adjusting attribute
eights also improves the quality of community detection. In
ur model, we use the feature engineering methods to increase
he weights of important attributes and reduce the weights of
ttributes that mismatch with the topology. We adjust the at-
ribute weights based on the experimental analysis and discuss
he different distribution of weighted attributes in the next part.
e also design an attribute propagation mechanism in AWAP
odel based on information propagation. In this mechanism,

he topology works as a medium to transfer node attributes.
n this way, the topological structure and the node attributes
re naturally combined together to dynamically adjust the at-
ribute weights. Thus, our adaptive weighted attribute propaga-
ion enhanced community detection methods to achieve the best
erformance in address classification in Bitcoin.
Discussion. In this part, we discuss the influence of param-

ters in AWAP model. We mainly focus on how data size and
ttribute weights influence the performance. We also analyze
he parameter λ in Eq. (12). A smaller λ enhances the ability of
ttribute propagation in the graph. In our experiments, we test
from 0.05 to 1, but the value of λ has a limited influence on

he classification results. One possible reason is that the model
as already finished the attribute propagation in the feature en-
ineering step because the address attributes are collected from
ll the transactions that it involves.
Data size. In this task, we choose the data size from 2500 to

5,000 with a step of 2500 from Data(I) in Table 2. The exper-
mental results are summarized in Fig. 5(a). With the growth of
he data scale, all three metrics gradually increase. When the data
cale is close to 10,000, the values of metrics tend to be stable.
hen the data size is 12,500, they reach the maximum values.

mall data size causes a small graph and low connectivity be-
ween nodes, which limits the attributes propagation throughout
he graph. Therefore, a sufficient big dataset is a key factor in the
uccess of our community detection model.
10
Attribute weight. In this task, we use Data(II) in Table 2 to
discuss how the attribute weights influence AWAP model. We
aggregate the feature weight vectors to calculate the weights of
52 attributes and summarize them in Fig. 5(b). Two attributes
have the highest weights, N_tx (the number of transactions) and
BTC_sent (the total amount of bitcoins that an address is sent).
wo attributes have the lowest weights are Max_Vout_sz (the
aximum number of transaction outputs) and Aver_Min_input

(the average value of the minimum transaction input value).
We show the distribution of BTC_sent and Aver_Min_input in
Fig. 5(c) and 5(d) respectively. Different colors from left to right
indicate different communities, Exchange, Gambling, DarkNet,
Mining, and Services. In Fig. 5(c), we observe that nodes in Dark-
Net are concentrated from 0.25 to 0.8, while nodes in the other
types are mainly concentrated below 0.2. Thus, BTC_sent is an
effective feature to distinguish the nodes between DarkNet and
the rest types. This is also the reason why our model set a higher
weight for BTC_sent compared to other attributes. While the
value of Aver_Min_input in Fig. 5(d) is relatively small so that the
importance of this feature is weak.

4.3. Feature engineering analysis

In this part, we analyze the influence of different feature
engineering methods on AWAP model. In Section 3.4, we design
a feature engineering pipeline that combines five state-of-the-art
feature pre-processing methods to generate the feature vectors.
In order to find the best feature engineering strategy, we evaluate
all the combinations. In this task, we use Data(II) in Table 2 for
performance evaluation.

Method encoding. In Table 6, the options for different feature
engineering combinations are illustrated. To test all the com-
binations, we implement 60 feature engineering pipelines with
permutation. Due to logistic regression method in the feature
selection stage always require data normalization, so we only im-
plement 56 feasible feature engineering pipelines in the end. To
facilitate the description, we use a five-digit number to represent
each feature engineering pipeline. The five numbers correspond
to the five steps of the pipeline. The value on each digit indicates
the method used in that step. For example, ‘‘21201’’ represents a
feature engineering pipeline that uses MinMax for data normal-
ization, performs feature combination, uses p-value for feature
selection, does not perform PCA, and uses a decision tree for fea-
ture discretization. We also definite a wildcard ‘‘x’’ to represent
an arbitrary method in this step.

Data normalization. In data normalization steps, there are
three options: no data normalization, Z-score, and MinMax. In
Fig. 6(a), we show the accuracy of different data normalization
methods associate with other features engineering methods. The
difference in results is mainly reflected in the feature selection
using logistic regression, that is, the feature engineering pipeline

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

T
P

d

r

T
R

n
F

able 5
erformance evaluation on community detection task.
Algorithm Information Citeseer Cora

F-score Jaccard NMI F-score Jaccard NMI

CNM Topology 0.1735 0.1094 0.2290 0.4210 0.2315 0.1491
DeepWalk Topology 0.2699 0.2481 0.0878 0.3917 0.3612 0.3270
Big-CLAM Topology 0.5114 0.0872 0.2197 0.4829 0.2340 0.2919
Circles Topology+Attributes 0.3405 0.1867 0.0024 0.3595 0.1810 0.0064
CP Topology+Attributes 0.6918 0.4991 0.4314 0.6770 0.5168 0.4863
CODICIL Topology+Attributes 0.5953 0.4041 0.3392 0.5857 0.3947 0.4254
CESNA Topology+Attributes 0.5240 0.1158 0.1158 0.6059 0.3254 0.4671

AWAP Topology+Attributes 0.7134 0.4570 0.5205 0.7583 0.5875 0.5683
Fig. 5. The performance of AWAP on: (a) different data size; (b) weight distribution of different attributes; (c) attribute distribution of BTC_sent; (d) attribute
istribution of Aver_Min_input .
Fig. 6. The performance of AWAP model on: (a) different data normalization; (b) different feature combination.
Fig. 7. The performance of AWAP on: (a) different Pearson thresholds; (b) different p-value thresholds; (c) different depths of decision tree; (d) different logistic
egression thresholds.
able 6
epresentation of feature engineering methods.
Steps Methods

Data normalization No(0),Z-score(1),MinMax(2)
Feature combination No(0),Yes(1)

Feature selection
No(0),Pearson(1),P-value(2),
Decision tree(3),
Logistic regression(4)

PCA No(0),Yes(1)
Feature discretization Yes(1)

is ‘‘x0401’’ and ‘‘x1401’’. For logistic regression, we can use Min-
Max to get the highest accuracy, but if we do not use any data
ormalization methods, the logistic regression result is bad. From
ig. 6(a), we know that data normalization is not necessary for
11
other feature selection methods. When the Pearson correlation
coefficient used for feature selection and feature combination
not performed, the accuracy without data normalization is even
better than the result with data normalization. When we ap-
ply feature combination, data normalization can help slightly
improve the accuracy.

Combination. In feature combination steps, there are two op-
tions: no combination and combination. In Fig. 6(b), we show the
effect of feature combinations on accuracy. Feature combination
can create new features and enhance the non-linearity of input
data. In most cases, the results of the feature combination method
are slightly better than the results without using the feature
combination. However, for those methods applying logistic re-
gression in feature selection, the classification accuracy is worse
when using the feature combination. One possible reason is that
logistic regression is a linear classifier, while non-linear features
may reduce its ability. In addition, after using MinMax for data

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507
Fig. 8. The performance of AWAP on: (a) PCA; (b) different feature vector dimensions; (c) different depths of decision tree in feature discretization; (d) different
data scales in feature discretization.
normalization, the feature combination cannot give full play to
its advantages. Feature combinations are more suitable for use in
decision trees without data normalization.

Feature selection. In feature selection steps, there are five
options: no selection, Pearson coefficient, hypothesis test, de-
cision tree, and logistic regression. This step can speed up the
classification process and eliminate noise features. The detailed
performance of feature selection methods is shown in Fig. 7.

In Fig. 7(a), we choose the Pearson coefficient as the feature
selection method and study the different thresholds. Firstly, we
calculate the Pearson coefficient for each feature. The closer the
absolute value of the Pearson coefficient is to 1, the more im-
portant the feature is. Secondly, we summarize the performance
with different thresholds. As the threshold continues to increase,
the number of selected features decreases and the performance
of classification is also declining. When we set the threshold to
0.1, the result is optimal among all the thresholds.

In Fig. 7(b), we show the classification results of the hypothesis
tests with a different p-value. The closer p-value is to 0, the
higher correlation between the feature and the label. As the
threshold increases, the number of selected features increases
as well. When the threshold is between 10−100 and 10−20, the
number of selected features is stable and all three metrics are
maximized.

In Fig. 7(c), we study decision trees for feature selection and
analyze the effect of tree depth on the classification task. As
the depth of the tree increases, the accuracy of the classification
results gradually increases and then tends to be stable. If we
set the threshold of feature weight to 0, we can select features
with a weight greater than 0. With the depth increasing, the
structure of the tree becomes more and more complex, and the
number of selected features increases. After the depth reaches 7,
the performance is no longer improved.

In Fig. 7(d), we show the result of feature selection using
the logistic regression model. We use L1 regularization and L2
regularization for experiments. In terms of classification accuracy
and precision, L1 regularization is better than L2 regularization
in general. The horizontal axis represents the threshold of fea-
ture weight. As the threshold increases, the number of selected
features decreases and the performance of L2 regularization grad-
ually decreases.

PCA. In Fig. 8(a), we show the influence of Principal Com-
ponent Analysis (PCA) on the experimental results. PCA reduces
the data dimension and improves the classifying ability on high
variance features. In the experiment, we use PCA to reduce the
size of the original feature vectors to 15. The experimental results
show that the classification accuracy is greatly descended when
applying PCA. We also study the influence of different output
feature size for PCA and show the result in Fig. 8(b). Whatever
output feature size we choose, the accuracy is always worse than
the framework without PCA. One possible reason is that PCA
loses some important information during computing the principal
components, where this information is important for our model.

Decision tree depth. To accelerate the speed of community
detection and improve the feature representation ability, we use
12
data discretization to convert a numerical vector into a binary
vector. In this stage, we use a decision tree to determine the
boundaries of each feature. The depth of the decision tree is an
important factor in determining the boundaries. In Fig. 8(c), we
test different tree depths for the data size of 10,000. From the
results of all three metrics, the best three depth is 3. As the
depth continues to increase, the accuracy declines gradually. A
deep depth makes each feature be divided into lots of intervals. In
the meanwhile, we explore the influence of data size along with
tree depth in Fig. 8(d). Small-scale data does not require too deep
decision trees. A decision tree with a depth of 3 obtains the best
results. As the size of the data increases, deeper decision trees
have more advantages.

5. Case studies on Bitcoin de-anonymization

In this section, we focus on two case studies on Bitcoin de-
anonymization: Bitcoin address classification and Bitcoin trace-
ability. We use Data(II) in the former case and Data(III) in the
latter case from Table 2. We use AWAP to analyze a public dataset
and trace three Bitcoin addresses disclosed in the ransomware
respectively. The results show that AWAP framework is able to
cluster similar addresses into a community and mining more
related addresses for further analysis.

5.1. Address classification

Address classification is one of the basic steps of Bitcoin De-
anonymization. In Bitcoin network, the user identity is a hash
value or public key which has no relationship with the real-
identities in the real-world. However, we still can analyze the
similarity of transaction behaviors and cluster similar addresses
into a group. In this way, the regulators are able to discover more
illegal transactions by running address classification algorithm on
the public ledger. In the first study case, we randomly selected
10,000 Bitcoin addresses from the dataset Jourdan et al. [9] to
evaluate AWAP model’s classification capability. We build an
address graph based on transactions among addresses and use
a feature engineering pipeline to generate a feature vector for
each address. In the pipeline, we choose the MinMax method to
normalize data, a logistic regression based on L1 regularization
to select features, and a decision tree to decompose each feature
into a set of bins feature. The depth of the decision tree is set to
3. The threshold is set to 1. We also select 24 features from 52
original features. Finally, each Bitcoin address can be represented
by a 184-dimensional feature vector. Our community detection
algorithm takes the attribute graph as the inputs to cluster the
Bitcoin addresses into different types of groups. The experimental
results show in Fig. 9.

Our model is able to group the same types of addresses into
the same community even though they may not connect with
each other topologically. Nodes in the same community tend to
belong to users with similar trading behaviors or even belong
to the same user. In Fig. 9, if we only know in advance that an
address 1DJT8D... is a Mining address, we can find that address

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507
Fig. 9. The community of different types obtained from AWAP.
1Q9vwq... may also be a Mining address from the classification
results of AWAP model. They may belong to the same mining
pool or even the same Bitcoin user. Even if there is no direct
transaction between address 1DJT8D... and address 13o2TB..., we
cannot rule out the possibility that they belong to the same user
or community.

In Fig. 9, given a labeled node, we are able to classify all the
nodes in the same community. Especially in Fig. 9, the nodes in
the Darknet community constructs into a complete graph, where
all the nodes in the community tend to connect to each other.
This shows that the trading behaviors among Darknet addresses
are more frequent compared to other types of community. The
traders in the Darknet community tend to only trade with the
user within the community. The above trading behavior pattern
may help us better detect those illegal transitions in Bitcoin
network. In the Darknet community, hundreds of black market
addresses are connected to each other and do not trade with
other types of addresses. This shows that transactions between
Darknet addresses are very frequent and traders are very cau-
tious. In order to prevent tracking, addresses used in black market
transactions are only used in the black market and not in other
places, so Darknet addresses are not connected to other types
of addresses. In addition, there are a large number of addresses
in one black market transaction. We guess they may use mixed
transactions to prevent tracking. Taking into account the char-
acteristics of different types of transactions, we can similarly
analyze the experiment results shown in Fig. 9. If we know
158nRB... is an Exchange address, we can realize that all these
addresses in the same community are of behaviors of Exchange
nodes. Especially, the address 16tymJ... appears in multiple dif-
ferent transactions. This phenomenon infers that 16tymJ... may
belong to a certain organization that is responsible for the ex-
change services. The addresses that have transacted with 16tymJ...
may be customers of the organization.

5.2. Bitcoin trace-ability

Recently, Bitcoin has become the most popular cryptocur-
rency for ransomware due to its anonymity mechanism. Hackers
usually disclose their Bitcoin addresses for extortion. However,
the regulators are not able to trace these malicious and illegal
behaviors with these public Bitcoin addresses directly. With our
proposed AWAP model, we can classify these disclosing Bitcoin
addresses into different communities using the transactions in
the public ledger of Bitcoin, which may provide some clues for
mining Bitcoin crimes.

To study the trace-ability of AWAP model in Bitcoin, we use
three disclosed Bitcoin addresses involving in ransomware as
the starting addresses, and then recursively crawl those Bitcoin
addresses trading with the starting addresses. Finally, we obtain
7882 Bitcoin addresses. We use AWAP to classify them, and set
the number of detection communities from 2 to 1000. When the
number of communities is set to greater than 500, the number

of communities detected keeps stable at around 120. Thus, we

13
finally classify 7882 addresses into approximately 120 entities.
This means Bitcoin addresses in one entity exhibit extremely sim-
ilar characteristics and cannot be classified anymore. The result of
1000 Bitcoin addresses is shown in Fig. 10.

In Fig. 10(a), we show three communities distinguished with
different colors and shapes. The large red node in the middle is
the Bitcoin address 12t9... disclosed as the ransomware, and we
use it as a starting address. In Fig. 10(b), we show five types
of communities. We use address 115p... and address 13AM... as
the other two starting addresses. No matter how much we set
the number of communities, address 115p... and address 13AM...
belong to the same community, and the address 12t9... always
belongs to another community. This shows that these three ad-
dresses do not belong to the same Bitcoin user, and may belong
to different individuals or organizations. We can find that many
addresses have transacted with the initial ransomware address.
These addresses may be victims, such as the yellow triangle nodes
and the pink star nodes. We also found many other addresses that
belong to the same community as the ransom address, such as
the red round nodes and the green square nodes. To reveal the
identity, we can further track the red and green nodes, they may
belong to the same organization as the ransomware addresses. In
Fig. 10, there is no direct transaction between address 115p... and
address 12t9.... But Fig. 10(a) shows that there are many transac-
tions between the red round nodes and the green square nodes
because these two organizations are distributing and diverting
the blackmailed bitcoins. The blue triangle nodes belong to an
interesting community and are not like ordinary victims. Their
trading behaviors are unique and can be divided into a separate
community and the number is small, so the blue community
deserves further study.

6. Related work

6.1. Address clustering

Heuristic clustering. Nakamoto and Bitcoin [1] propose the
multi-input heuristic clustering methods to cluster Bitcoin ad-
dresses. They find that multiple inputs of a transaction are likely
to belong to the same user. Reid and Harrigan [16] derive two
topological utilize multi-input heuristic clustering to investigate
the alleged theft in Bitcoins. Androulaki et al. [19] study the pri-
vacy provisions in Bitcoin using multi-input heuristic and shadow
heuristic. They simulate a Bitcoin ecosystem within a university
and the results show that almost 40% of users can be identified
even though they use a new Bitcoin address for each new transac-
tion. Nick [20] proposes two new heuristic clustering algorithms,
consumer heuristic, and optimal change heuristic. They apply four
heuristic clustering methods on a dataset collected from a vul-
nerability in Connection Bloom Filtering. They show the heuristic
clustering algorithms can achieve 69% accuracy on average.

Data mining approaches. Jourdan et al. [22] develop a prob-
abilistic model that accounts for five features including address

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507
Fig. 10. Transaction trace-ability graph of ransomware addresses: (a) address 12t9...; (b) address 115p... and address 13AM....
features, entity features, temporal features, graph centrality met-
ric features, and motif features. Toyoda et al. [24] use a scraping-
based method to collect more than 2000 HYIP operators’ Bitcoin
addresses and identify them based on the rate conversion tech-
nique and the sampling technique. Their method classifies 95% of
the HYIP addresses correctly. Lin et al. [23] propose a classifier by
adding new features, such as transaction time, to identify Bitcoin
addresses. They train eight classifiers such as Logistic Regres-
sion, SVM, Random Forest, and LightGBM. Eventually, LightGBM
achieves the highest Micro-F1 of 87%. Huang et al. [21] design an
algorithm named BPC which is similar to k-means clustering to
study the Bitcoin behavior pattern. Bartoletti et al. [2] train the
RIPPER, Bayes Network, and Random Forest models on a real-
world Ponzi schemes dataset. The best algorithm achieves 99%
accuracy.

Deep learning-based methods. Shao et al. [8] propose a deep
learning method achieving Bitcoin address–user mapping. They
train a deep neural network to obtain address feature vectors and
classify the Bitcoin addresses by calculating the distance between
address feature vectors. Tang et al. [25] design a deep learning-
based approach named PeerClassifier to capture the behavior
pattern in the Bitcoin system. They extract sequence represen-
tation from node behaviors. Liang et al. [26] develop an address
identification algorithm with high fault tolerance. They divide
Bitcoin addresses into four types, exchange, gambling, service,
and general, and use network representation learning to improve
the classification performance.

6.2. Community detection

Community detection can be categorized into two different
types. One only considers the topology of the graph, while the
other comprehensively considers both the topological structure
and node attributes. Blondel et al. [31] use a heuristic method
to extract the community structure of the large networks based
on modularity optimization. Yang and Leskovec [42] present an
overlapping community detection method, BIGCLAM that scales
to large networks of millions of nodes and edges. Clauset et al.
[43] present a hierarchical agglomeration algorithm for detecting
community structure. Perozzi et al. [44] propose a structure-
only representation learning method, DeepWalk, and use local
information obtained from truncated random walks to learn the
latent representations.

Leskovec and Mcauley [45] propose a model for detecting
circles that combine network structure as well as user profile in-
formation. They learn members and user profile similarity metric
for each circle. A Bayesian probabilistic model(BAGC) for attribute
14
graph clustering is proposed in Xu et al. [41]. The model provides
a principled and natural framework for capturing both structural
and attribute aspects of a graph, avoiding the artificial design of a
distance measure. Yang et al. [46] develop CESNA for overlapping
community detection which has a linear runtime in the network
size. Liu et al. [36] treat a network with a dynamic system and
uses the principle of information propagation to integrate the
structure and contents in a network. Ruan et al. [47] design a
mechanism for fusing content and link similarity. They present
a biased edge sampling procedure and finally cluster an edge set
with similar properties.

7. Conclusion

In this paper, we address the Bitcoin de-anonymity by study-
ing the Bitcoin addresses classification to further understand user
trading behaviors. To achieve this goal, we first parser the raw
Bitcoin transaction data into the structured data and design a
feature engineering pipeline to process node attributes. Then we
construct an attribute graph with both the topological structure
and the node attributes. Finally, we propose a community detec-
tion method based on adaptive weighted attribute propagation
to cluster the Bitcoin addresses and further analyze the influ-
ence of different feature engineering strategies. Our AWAP model
outperforms all the baselines on both public datasets and the
Bitcoin transactions dataset. Our model can efficiently resolve the
Bitcoin addresses classification, community detection, and ran-
somware Bitcoin address trace-ability. One future direction is to
include node embedding techniques in the community detection
model that can automatically extract useful information from
input data. The other one is to explore bitcoin user’s behaviors,
further contribute to the healthy development of Bitcoin, and
design privacy-preserving cryptocurrencies.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is partially supported by the National Key Research
and Development Program of China (2018YFB2100304), the Zhe-
jiang Lab (2021KF0AB04), and the Natural Science Foundation of

Tianjin(20JCZDJC00610).

X. Xueshuo, W. Jiming, Y. Junyi et al. Applied Soft Computing 109 (2021) 107507

R
eferences

[1] S. Nakamoto, A. Bitcoin, A peer-to-peer electronic cash system, Bitcoin
(2008) –URL: https://bitcoin.org/bitcoin.pdf.

[2] M. Bartoletti, B. Pes, S. Serusi, Data mining for detecting bitcoin ponzi
schemes, in: 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT), IEEE, 2018, pp. 75–84.

[3] H.H. Sun Yin, K. Langenheldt, M. Harlev, R.R. Mukkamala, R. Vatrapu,
Regulating cryptocurrencies: a supervised machine learning approach to
de-anonymizing the bitcoin blockchain, J. Manage. Inf. Syst. 36 (1) (2019)
37–73.

[4] N. Christin, Traveling the Silk Road: A measurement analysis of a large
anonymous online marketplace, in: Proceedings of the 22nd International
Conference on World Wide Web, 2013, pp. 213–224.

[5] L. Zhu, Y. Wu, K. Gai, K.-K.R. Choo, Controllable and trustworthy
blockchain-based cloud data management, Future Gener. Comput. Syst. 91
(2019) 527–535.

[6] D. Ron, A. Shamir, Quantitative analysis of the full bitcoin transaction
graph, in: International Conference on Financial Cryptography and Data
Security, Springer, 2013, pp. 6–24.

[7] C. Zhao, Y. Guan, A graph-based investigation of bitcoin transactions,
in: IFIP International Conference on Digital Forensics, Springer, 2015, pp.
79–95.

[8] W. Shao, H. Li, M. Chen, C. Jia, C. Liu, Z. Wang, Identifying bitcoin users
using deep neural network, in: International Conference on Algorithms and
Architectures for Parallel Processing, Springer, 2018, pp. 178–192.

[9] M. Jourdan, S. Blandin, L. Wynter, P. Deshpande, Characterizing entities
in the bitcoin blockchain, in: 2018 IEEE International Conference on Data
Mining Workshops (ICDMW), IEEE, 2018, pp. 55–62.

[10] K. Gai, J. Guo, L. Zhu, S. Yu, Blockchain meets cloud computing: A survey,
IEEE Commun. Surv. Tutor. (2020).

[11] K. Gai, Y. Wu, L. Zhu, M. Qiu, M. Shen, Privacy-preserving energy trading
using consortium blockchain in smart grid, IEEE Trans. Ind. Inf. 15 (6)
(2019) 3548–3558.

[12] K. Liao, Z. Zhao, A. Doupé, G.-J. Ahn, Behind closed doors: measure-
ment and analysis of cryptolocker ransoms in bitcoin, in: 2016 APWG
Symposium on Electronic Crime Research (ECrime), IEEE, 2016, pp. 1–13.

[13] P. Koshy, D. Koshy, P. McDaniel, An analysis of anonymity in bitcoin using
p2p network traffic, in: International Conference on Financial Cryptography
and Data Security, Springer, 2014, pp. 469–485.

[14] I.D. Mastan, S. Paul, A new approach to deanonymization of unreachable
bitcoin nodes, in: International Conference on Cryptology and Network
Security, Springer, 2017, pp. 277–298.

[15] P.L. Juhász, J. Stéger, D. Kondor, G. Vattay, A bayesian approach to identify
bitcoin users, PLoS One 13 (12) (2018) e0207000.

[16] F. Reid, M. Harrigan, An analysis of anonymity in the bitcoin system, in:
Security and Privacy in Social Networks, Springer, 2013, pp. 197–223.

[17] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G.M.
Voelker, S. Savage, A fistful of bitcoins: characterizing payments among
men with no names, in: Proceedings of the 2013 Conference on Internet
Measurement Conference, 2013, pp. 127–140.

[18] Z. Zhang, T. Zhou, Z. Xie, Bitscope: Scaling bitcoin address deanonymization
using multi-resolution clustering, in: Proceedings of the 51st Hawaii
International Conference on System Sciences, 2018.

[19] E. Androulaki, G.O. Karame, M. Roeschlin, T. Scherer, S. Capkun, Evalu-
ating user privacy in bitcoin, in: International Conference on Financial
Cryptography and Data Security, Springer, 2013, pp. 34–51.

[20] J.D. Nick, Data-Driven De-Anonymization in Bitcoin (Master’s thesis),
ETH-Zürich, 2015.

[21] B. Huang, Z. Liu, J. Chen, A. Liu, Q. Liu, Q. He, Behavior pattern clustering in
blockchain networks, Multimedia Tools Appl. 76 (19) (2017) 20099–20110.

[22] M. Jourdan, S. Blandin, L. Wynter, P. Deshpande, A probabilistic model of
the bitcoin blockchain, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2019.

[23] Y.-J. Lin, P.-W. Wu, C.-H. Hsu, I.-P. Tu, S.-w. Liao, An evaluation of bitcoin
address classification based on transaction history summarization, in: 2019
IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
IEEE, 2019, pp. 302–310.

[24] K. Toyoda, P.T. Mathiopoulos, T. Ohtsuki, A novel methodology for
HYIP operators’ bitcoin addresses identification, IEEE Access 7 (2019)
74835–74848.
15
[25] H. Tang, Y. Jiao, B. Huang, C. Lin, S. Goyal, B. Wang, Learning to classify
blockchain peers according to their behavior sequences, IEEE Access 6
(2018) 71208–71215.

[26] J. Liang, L. Li, W. Chen, D. Zeng, Targeted addresses identification for
bitcoin with network representation learning, in: 2019 IEEE International
Conference on Intelligence and Security Informatics (ISI), IEEE, 2019, pp.
158–160.

[27] S. Ranshous, C.A. Joslyn, S. Kreyling, K. Nowak, N.F. Samatova, C.L. West,
S. Winters, Exchange pattern mining in the bitcoin transaction directed
hypergraph, in: International Conference on Financial Cryptography and
Data Security, Springer, 2017, pp. 248–263.

[28] W. Chen, J. Wu, Z. Zheng, C. Chen, Y. Zhou, Market manipulation of
bitcoin: evidence from mining the mt. Gox transaction network, in: IEEE
INFOCOM 2019-IEEE Conference on Computer Communications, IEEE, 2019,
pp. 964–972.

[29] E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Hierarchical
organization of modularity in metabolic networks, science 297 (5586)
(2002) 1551–1555.

[30] D.J. Watts, P.S. Dodds, M.E. Newman, Identity and search in social
networks, science 296 (5571) (2002) 1302–1305.

[31] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, J. Statist. Mech.: Theory Exp. 2008 (10)
(2008) P10008.

[32] X. Li, B. Kao, Z. Ren, D. Yin, Spectral clustering in heterogeneous infor-
mation networks, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33, 2019, pp. 4221–4228.

[33] D. Kamuhanda, K. He, A nonnegative matrix factorization approach for
multiple local community detection, in: 2018 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM),
IEEE, 2018, pp. 642–649.

[34] Y. Tian, R.A. Hankins, J.M. Patel, Efficient aggregation for graph summariza-
tion, in: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, 2008, pp. 567–580.

[35] M. Qin, D. Jin, K. Lei, B. Gabrys, K. Musial-Gabrys, Adaptive commu-
nity detection incorporating topology and content in social networks*,
Knowl.-Based Syst. 161 (2018) 342–356.

[36] L. Liu, L. Xu, Z. Wangy, E. Chen, Community detection based on struc-
ture and content: A content propagation perspective, in: 2015 IEEE
International Conference on Data Mining, IEEE, 2015, pp. 271–280.

[37] M. Fleder, M.S. Kester, S. Pillai, Bitcoin transaction graph analysis, 2015,
arXiv preprint arXiv:1502.01657.

[38] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, A. Narayanan, Blocksci:
Design and applications of a blockchain analysis platform, 2017, arXiv
preprint arXiv:1709.02489.

[39] L. Xu, M. White, D. Schuurmans, Optimal reverse prediction: a unified
perspective on supervised, unsupervised and semi-supervised learning,
in: Proceedings of the 26th Annual International Conference on Machine
Learning, 2009, pp. 1137–1144.

[40] Y. Zhou, H. Cheng, J.X. Yu, Graph clustering based on structural/attribute
similarities, Proc. VLDB Endow. 2 (1) (2009) 718–729.

[41] Z. Xu, Y. Ke, Y. Wang, H. Cheng, J. Cheng, A model-based approach to
attributed graph clustering, in: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, 2012, pp. 505–516.

[42] J. Yang, J. Leskovec, 2013,
[43] A. Clauset, M.E. Newman, C. Moore, Finding community structure in very

large networks, Phys. Rev. E 70 (6) (2004) 066111.
[44] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social

representations, in: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[45] J. Leskovec, J.J. Mcauley, Learning to discover social circles in ego networks,
in: Advances in Neural Information Processing Systems, 2012, pp. 539–547.

[46] J. Yang, J. McAuley, J. Leskovec, Community detection in networks with
node attributes, in: 2013 IEEE 13th International Conference on Data
Mining, IEEE, 2013, pp. 1151–1156.

[47] Y. Ruan, D. Fuhry, S. Parthasarathy, Efficient community detection in large
networks using content and links, in: Proceedings of the 22nd International
Conference on World Wide Web, 2013, pp. 1089–1098.

https://bitcoin.org/bitcoin.pdf
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb2
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb2
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb2
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb2
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb2
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb3
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb3
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb3
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb3
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb3
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb3
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb3
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb5
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb5
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb5
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb5
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb5
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb6
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb6
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb6
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb6
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb6
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb7
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb7
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb7
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb7
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb7
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb8
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb8
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb8
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb8
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb8
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb9
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb9
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb9
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb9
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb9
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb10
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb10
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb10
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb11
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb11
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb11
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb11
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb11
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb12
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb12
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb12
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb12
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb12
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb13
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb13
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb13
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb13
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb13
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb14
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb14
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb14
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb14
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb14
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb15
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb15
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb15
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb16
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb16
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb16
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb19
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb19
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb19
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb19
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb19
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb20
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb20
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb20
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb21
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb21
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb21
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb23
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb23
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb23
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb23
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb23
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb23
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb23
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb24
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb24
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb24
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb24
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb24
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb25
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb25
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb25
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb25
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb25
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb26
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb26
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb26
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb26
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb26
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb26
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb26
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb27
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb27
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb27
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb27
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb27
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb27
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb27
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb28
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb28
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb28
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb28
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb28
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb28
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb28
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb29
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb29
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb29
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb29
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb29
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb30
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb30
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb30
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb31
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb31
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb31
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb31
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb31
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb33
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb33
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb33
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb33
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb33
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb33
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb33
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb35
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb35
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb35
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb35
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb35
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb36
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb36
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb36
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb36
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb36
http://arxiv.org/abs/1502.01657
http://arxiv.org/abs/1709.02489
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb40
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb40
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb40
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb42
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb43
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb43
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb43
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb45
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb45
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb45
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb46
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb46
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb46
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb46
http://refhub.elsevier.com/S1568-4946(21)00430-0/sb46

	AWAP: Adaptive weighted attribute propagation enhanced community detection model for bitcoin de-anonymization
	Introduction
	Background and motivation
	Bitcoin
	De-anonymization in Bitcoin
	Community detection
	Feature engineering
	Goals and challenges

	The AWAP model
	Model overview
	Transaction parser
	Graph construction
	Features extraction
	Community detection

	Evaluation
	Experimental setup
	Model performance
	Feature engineering analysis

	Case studies on Bitcoin de-anonymization
	Address classification
	Bitcoin trace-ability

	Related work
	Address clustering
	Community detection

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

