
Block-gram: Mining Knowledgeable Features for
Smart Contract Vulnerability Detection

Tao Li1,3,4, Haolong Wang2, Yaozheng Fang2, Zhaolong Jian2, Zichun Wang2,
and Xueshuo Xie⋆2,3,4

1 Tianjin Key Laboratory of Network and Data Security Technology, Tianjin, China
2 College of Computer Science, Nankai University, Tianjin, China

3 Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province
4 State Key Laboratory of Computer Architecture, Institute of Computing

Technology, Chinese Academy of Sciences

Abstract. Effective vulnerability detection of large-scale smart con-
tracts is critical because smart contract attacks frequently bring about
tremendous economic loss. However, code analysis requiring traversal
paths and learning methods requiring many features training is too time-
consuming to detect large-scale on-chain contracts. This paper focuses
on improving detection efficiency by reducing the dimension of the fea-
tures, combined with expert knowledge. We propose a feature extrac-
tion method Block-gram to form low-dimensional knowledgeable features
from the bytecode. We first separate the metadata and convert the run-
time code to opcode sequence, dividing the opcode sequence into seg-
ments according to some instructions (jump, etc.). Then, we mine ex-
tensible Block-gram features for learning-based model training, consist-
ing of 4-dimensional block features and 8-dimensional attribute features.
We evaluate these knowledge-based features using seven state-of-the-art
learning algorithms to show that the average detection latency speeds
up 25 to 650 times, compared with the features extracted by N-gram.

Keywords: Smart Contract, Bytecode, Opcode, Knowledgeable Features, Vul-
nerability Detection

1 Introduction

Smart contracts are widely deployed on blockchain to implement complex trans-
actions, such as decentralized applications on Ethereum [1]. As of August 9,
2022, the number of smart contracts exceeded 51.1 million on Ethereum1. These
smart contracts are written in a domain specific language (e.g., Solidity), com-
piled into bytecodes with a compiler, executed many times as opcodes in EVM
after being deployed on-chain by the consensus mechanism [2]. Due to running on
distributed nodes of blockchain, once vulnerabilities are found, they are difficult
⋆ Corresponding author: xueshuoxie@nankai.edu.cn
1 https://explore.duneanalytics.com/

to upgrade and repair [3,4]. For example, hackers exploited a re-entrancy vulner-
ability in the DAO contract to steal 3.6 million ETH2. According to SlowMist
Hacked, a huge economic loss of more than $10 billion has been caused due to
the security issues of smart contracts3. With the rapid increase in the number
of smart contracts, an efficient smart contract vulnerability detection method is
particularly important for the development of blockchain [5].

Nowadays, the mainstream vulnerability detection methods on smart con-
tracts include code analysis and machine learning. For code analysis, we can an-
alyze the types or causes of vulnerabilities with expert knowledge through formal
verification, symbolic execution, fuzz testing, etc. [6–10]. But these methods need
to traverse more paths of code or complexity mathematical proofs, the detec-
tion is time-consuming and labor-intensive. For machine learning, they primarily
capture code features by training machine learning models to infer whether it is
vulnerable. Some smart contract vulnerability detection algorithms are based on
the combination of text information and neural network [5, 11–13] or based on
the combination of smart contract graph information and neural network [14,15].
But all of them need a large feature space for training, and the dimensional of
features will influence the model performance and detection latency.

In this paper, we focus on detection efficiency as the quick detection require-
ment goal of large-scale smart contracts and face the following challenges: (1)
how to improve detection model performance combined with attribute features
of vulnerabilities through expert knowledge; (2) how to reduce the dimension
of feature space for machine learning model training? Optimize the detection
latency without influencing the model performance. We address the above chal-
lenges through two key designs. To tackle the first challenge, we preprocess the
bytecode to opcode sequences according to the disassembling rules of Ethereum
and divide the opcode sequences into flow graphs through some instructions
(jump, etc.) for extracting 4-dimensional block features. For the second chal-
lenge, we mine other 8-dimensional attributr features from vulnerabilities analy-
sis through expert knowledge, to construct extensible 12-dimensional Block-gram
features. The Block-gram has lower dimensional features than the existing fea-
tures with thousand dimensions by N-gram, and will significantly reduce the
detection latency and not influence the model performance. We also evaluate
the effectiveness of the Block-gram features on seven state-of-the-art machine
learning algorithms. In summary, this paper makes the following contributions:

– We mine the Block-gram features from bytecode, including block features,
and attribute features on smart contract vulnerabilities. The Block-gram
features are extensible low-dimensional features and will significantly reduce
the detection latency without influencing the model performance.

– We introduce expert knowledge when constructing opcode sequence flow
graphs and extracting attribute features, and combine vulnerability analysis
to improve the performance of the above low-dimensional features.

2 http://www.coindesk.com/daoattacked-code-issue-leads-60-million-ether-theft,
2016.

3 https://hacked.slowmist.io/en/

– We validate the efficiency of Block-gram features on seven state-of-the-art
machine learning algorithms. The evaluation shows that the above low-
dimensional features can flexibly support multiple detection algorithms and
significantly reduce detection latency.

The rest of this paper is organized as follows. We briefly introduce some con-
cepts about Ethereum virtual machine (EVM) and smart contracts and summa-
rize the related work of smart contract security analysis in Section II. Section
III provides a detailed discuss the features extraction method. Experiments and
results are presented in Section IV, to discuss the effectiveness, efficiency of the
extracted features. Section V concludes the paper.

2 Preliminaries

2.1 Ethereum Smart Contract

Ethereum Virtual Machine. For smart contract running, EVM provides 142
opcodes or bytecodes with 10 functions, such as stop and arithmetic operations,
push operations, etc. [16] There are only 256 opcodes at maximum, but some
instructions are not defined now, only for future expansion. EVM has a simple
stack structure with a maximum stack size of 1024. Each opcode is allocated one
byte (for example, STOP is 0x00), pushes or pops a certain number of elements
from the stack, and can obtain information about the execution environment,
or interact with other blockchains smart contracts [16]. During execution, the
bytecode is split into bytes (1 byte equals 2 hex characters). Bytes in region
0x60 -0x7f (PUSH1 -PUSH32) are treated differently because they contain data
that needs to be pushed into the stack. If the call count is over 1024, the call-
stack attack may take place. EVM explains how to change the system state given
a series of the above instructions and a small part of environmental data.

Smart Contract Compilation. As shown in Fig. 1, the developers write
the source code in a high-level language (e.g., Solidity). The source codes are
compiled into byte arrays encoded by hexadecimal digits with a compiler as
bytecodes. [17] Then, the bytecodes are uploaded to EVM with an Ethereum
client and can be translated into EVM instructions or opcodes. [18] After the
source code of the contract is compiled into EVM bytecode and ABI, it can be
deployed using the Web3.js interface. For contract deployment, it is essential
to execute a transaction, which has no destination address but the data field is
EVM bytecode. [19] When processing this transaction, the EVM executes the
input data as code. The bytecode is divided into deployment code, runtime code,
and metadata. After the contract deployment, EVM will store the runtime code
and metadata on the blockchain, and then match their storage addresses to the
contract account to complete the deployment of the contract. It would be easier
to analyze smart contracts with bytecodes or opcodes, because: (1) bytecodes or
opcodes are not had man-made variables that are defined in source codes; (2)
bytecodes or opcodes are easy to collect from the public blockchain.

EVM

Creation Compilation Execution Deployment Upgrade

Source

code
Bytecode Opcode

Bytecode

Bytecode

Block

chain

EVM

E

Fig. 1: Smart Contract Compilation Process.

2.2 Smart Contract Security Analysis

Code Analysis. As shown in Table 1, we conclude some state-of-the-art code
analysis and learning methods for smart contract vulnerability detection [4].
Most of the traditional smart contract vulnerability detection methods are based
on program code analysis and program path analysis, such as formal verifica-
tion, symbolic execution, fuzz testing, intermediate representation, and so on.
Hildenbrandt et al. [6] present KEVM based on formal verification and provide
an executable formal specification for EVM’s program language using the K
framework. Luu et al. [8] use symbolic execution to implement Oyente which
traverses smart contract execution paths based on control flow graphs to detect
vulnerability. Jiang et al. [9] propose Contractfuzzer that sets up test cases and
analyzes smart contract behavior logs to detect vulnerabilities based on fuzz test-
ing. Albert et al. [10] implement Ethir based on intermediate representation and
analyze the security properties of bytecode by converting Oyente’s control flow
graph into a rule-based representation. Due to the need to traverse most paths
of the code, the detection is time-consuming and labor-intensive, and difficult to
use for large-scale contract detection.

Learning method. We also investigated some neural network-based smart
contract vulnerability detection tools. Yu et al. [11] present Deescvhunter that
uses a novel notion of Vulnerability Candidate Slice to capture the key of re-
entrancy vulnerability and time dependence vulnerability. Wang et al. [5] propose
ContractWard that can extract bigram features from smart contract opcodes
and use multiple machine learning algorithms for vulnerability detection. Mi
et al. [13] apply novel feature vector generation techniques from bytecode and
metric learning-based deep neural network to detect vulnerability. Zhuang et
al. [14] use DR-GCN to convert source code into contract graph and use graph
convolutional neural network to build a vulnerability detection model. Based
on DR-GCN, TMP considered the time sequence information in the contract
graph and used the time sequence graph neural network to build a vulnerability
detection model. Zeng et al. [15] use graph neural network and expert knowledge
to build the control flow graph with attribute and input graph attribute features
into graph neural networks to detect vulnerabilities. However, due to the lack of
expert knowledge of the features, most learning methods use high-dimensional
feature spaces for training, such as N-gram extracting thousands of dimensional
features. Due to the high feature space dimension, the detection is still time-

Table 1: Comparisons among smart contract vulnerability detection methods.

Type Name Base Model Detection Source Platform

Code analysis

KEVM Formal Verification bytecode EVM
Oyente Symbolic Execution bytecode & ETH Condition EVM
Contractfuzzer Fuzz Testing EVM ABI & EVM Log EVM
Ethir Intermediate Representation bytecode EVM

Learning methods

DR-GCN GCN source code ETH & VNT
TMP TGNN source code ETH & VNT
Deescvhunter DNN source code ETH
Eth2vec DNN bytecode ETH
Escort DNN bytecode ETH
Rechecker BLSTM sourcecode ETH
ContractWard XGBoost bytecode ETH
Vscl DNN bytecode ETH
EtherGIS GNN bytecode ETH
SafeSC LSTM opcode ETH

consuming and may not be suitable for batch vulnerability detection. Therefore,
combining the expert knowledge used in code analysis with the learning methods
is precisely the problem that our work mainly solves.

3 Detailed Design

3.1 Overview

As shown in Fig.2, we present a detailed description of the features extrac-
tion method Block-gram using smart contract bytecode. We first extract the
4-dimensional bytecode block features from the opcode sequence flow graph ac-
cording to the disassembling rules of Ethereum. Then, we divide the opcodes
into eight categories and count their ratios as 8-dimensional attribute features
through six vulnerabilities analysis by expert knowledge. Finally, we use these
12-dimensional Block-gram features by seven state-of-the-art machine learning
algorithms to detect six vulnerabilities. The Block-gram features include in:

– Rule-based bytecode block features. We first collect the bytecode of the
metadata header of various solidity versions. The metadata in the bytecode
is separated from the runtime code by string matching, and convert the
runtime code into opcode according to Ethereum disassembling rules. Then
we divide the opcode sequence into blocks, determine the jump relationship
between blocks through JUMP opcode, and generate the opcode sequence flow
graph, denoted by the adjacency matrix. We extract the number of nodes,
number of edges, maximum out-degree, and maximum in-degree from the
adjacency matrix as 4-dimensional bytecode block features. These features
can preserve the relationship between different bytecode blocks.

– Attribute Features with Expert Knowledge. We first divide the op-
codes of Ethereum into eight categories, such as unary arithmetic opcodes,
binary arithmetic opcodes, block opcodes, control-flow opcodes, environmen-
tal opcodes, system opcodes, stack opcodes, and invalid opcodes. Each type

Feature Extraction

Bytecode

Runtime

Code

Metadata(Ignore)

Opcode

Vulnerability

Attribute

Feature

Block

Feature

Feature

Space

Six Vulnerabilities
Expert

Knowledge

Machine

Learning

Model

Vulnerability Detection

1：With Vulnerability

0：Without Vulnerability

Detect

Block-gram

Fig. 2: The Block-gram feature extraction method overview.

of opcode corresponds to several smart contract vulnerabilities according to
the vulnerability analysis with expert knowledge. We take the scale of each
type of opcode and count their ratios as 8-dimensional extensional attribute
features. These features can preserve the expert knowledge on vulnerability,
and extend with the new vulnerabilities.

3.2 Rule-based Bytecode Block Features

The key to bytecode preprocessing are metadata separation and bytecode con-
version. In the metadata separation module, we separate metadata and runtime-
code according to metadata header(e.g.,0x65 ‘bzzr0’ 0x58 0x20 <32 bytes swarm
hash>0x00 0x29). Then we convert the runtimecode to the opcode according to
Ethereum conversion rules. The bytecode of each non-PUSH class opcodes is
converted into the corresponding opcode(for example, STOP is 0x00, ADD is
0x01). But for the PUSH class opcodes, we get the length of their parameters
according to the type of the PUSH opcode, so as to convert the bytecode.

The existing processing methods of opcode sequence are divided into block-
sequence method and natural language processing method. Block-sequence method
divides the opcode sequence into blocks and edges. Natural language processing
method uses N-gram method to process the opcode sequence. We choose block-
sequence method to process opcode sequence and build adjacency matrix. First,
we divide the opcode into blocks according to the jump class instruction, and
then determine the edges between blocks according to the jump type at the end
of each block. Each blocks has the following boundary.

– Starting point: JUMPDEST...
– End point: JUMP, JUMP I, STOP, REVERT, RETURN, SELFDESTRUCT,

INVALID

In order to construct the edges between blocks, we divide edges into three
categories according to the end point of blocks:

– JUMP: If there is PUSHn before JUMP, the parameter of PUSHn is the destination
address of JUMP. If there is not PUSHn before JUMP, we using stack execution
algorithm provided by EtherSlove [20] to calculate the destination address.

– JUMP I: JUMP I is a conditional jump. True edge’s target is the parameter
of the PUSH opcode; false edge’s target is the offset of the following block.
This means that if a basic block ends with JUMP I, then there will be two
edges starting from this block.

– REVERT, SELFDESTRUCT, RETURN, INVALID, STOP: These opcodes mean the
interruption of control flow, so they have no subsequent basic blocks.

When we get the blocks and edges, we can build an opcode sequence flow
graph. Because the opcode sequence flow graph is a directed graph, we use
the adjacency matrix to represent the opcode sequence flow graph and extract
sequence features from the adjacency matrix. Then, we extract four-dimensional
smart contract block features according to the adjacency matrix. These features
represent the sequence attribute of the opcode.

– Number of nodes. The number of rows or columns of the adjacency matrix
is the number of nodes. The number of nodes represents how many basic
blocks are in the opcode sequence flow graph.

– Number of edges. The sum of the elements in the adjacency matrix is the
number of edges. The number of edges represent how many basic edges are
in the opcode sequence flow graph.

– Maximum out-degree. The maximum value of the sum of the elements in
row i is the maximum out-degree. Out-degree is the sum of the times when
a block of the opcode sequence flow graph is used as the starting point.

– Maximum in-degree. The maximum value of the sum of the elements in
row j is the maximum in-degree. In-degree is the sum of the times when a
block of the opcode sequence flow graph is used as the end point.

3.3 Attribute Features with Expert Knowledge

There are some common vulnerabilities in Ethereum, such as integer overflow
vulnerabilities, integer underflow vulnerabilities, callstack depth attack vulner-
ability, transaction-ordering dependence vulnerability, timestamp dependency
vulnerability, and re-entrancy vulnerability. We extract some attribute features
by using expert knowledge to analyze six vulnerabilities of the Ethereum smart
contracts. The cause of the above vulnerability is associated with some opcodes.
We divide the opcodes of Ethereum into eight categories, such as unary arith-
metic opcodes, binary arithmetic opcodes, block opcodes, control-flow opcodes,
environmental opcodes, system opcodes, stack opcodes, and invalid opcodes. As
shown in Table 2, each type of opcode corresponds to several smart contract
vulnerabilities according to the vulnerability analysis with expert knowledge.
We take the scale of each type of opcode and count their ratios as 8-dimensional
extensional features. These features can preserve the expert knowledge on vul-
nerability, and extend with the new vulnerabilities. We define count (opcode, i)
as the number of all opcodes of the smart contract i and count (j, i) as the num-
ber of opcodes corresponding to feature j in the smart contract i. For example,
count (1, 1) is the number of unary arithmetic opcodes in smart contract 1.

Table 2: Block-gram Knowledgeable Features.

Feature Opcode Value Knowledge

Block Feature

node

None

>0

feature of blockedge >0
maxout >0
maxin >0

Attribute Feature

unary-arithmetic ratio ISZERO, NOT... (0,1) feature of integer overflowbinary-arithmetic ratio ADD, AND, SHA3... (0,1)
block ratio NUMBER, BLOCKHASH, COINBASE... (0,1) feature of timestamp dependency

control-flow ratio JUMP, JUMP I, JUMPDEST... (0,1) feature of re-entrancy
environment ratio CALLER, CALLDATASIZE... (0,1) feature of TOD

system ratio CALL, RETUREN, REVERT... (0,1) feature of callstack depth attackstack ratio POP, PUSH, SWAP... (0,1)
invalid ratio Others (0,1) feature of invalid opcodes

– Unary and Binary arithmetic opcodes ratio: In Ethereum, some op-
codes are responsible for arithmetic operations, including unary, binary, and
ternary arithmetic opcodes. Only these arithmetic opcodes cause integer
overflow. In our research on smart contract, we find that almost no contract
contain ternary arithmetic codes, so we only consider unary(e.g., ISZERO,
NOT) and binary(e.g., ADD, AND, SHA3) arithmetic opcodes.

– Block opcodes ratio: In Ethereum, some opcodes are related to the block
information. BLOCKHASH shows the hash value of the block, COINBASE is the
address of the miner. At Ethereum system layer, block information is often
used as a seed for generating random numbers. However, the block times-
tamp, number, and other information are often used by attackers. Block
information opcodes are related to timestamp dependency vulnerabilities.

– Control-flow opcodes ratio: Some opcodes are used to change the control
flow. JUMP is an unconditional jump that takes the top element of the stack
as the destination address. JUMP I is a conditional jump that has the same
destination address with JUMP if the top element of the stack is not zero;
otherwise, EVM will execute the opcodes following JUMP I. The re-entrancy
vulnerability stems from the attacker’s cyclic call changing the control flow.
Control flow opcodes are related to this vulnerability.

– Environmental opcodes ratio: Some opcodes are responsible for inter-
acting with contracts and message calls and transactions. ADDRESS is the
address of the currently executed contract. ORIGIN is the address of the ini-
tiator of the transaction. CALLER is the address of the caller of the message.
Since the environmental opcodes can obtain transaction information, they
are related to Transaction-Ordering Dependence vulnerabilities that also rely
on transaction information.

– System opcodes ratio: The system opcodes are responsible for calling
between smart contracts. CALL calls the function in other contracts. RETURN
returns from the contract calls. REVERT reverts transaction and return data.

– Stack opcodes ratio: EVM is a stack machine, and all calculations are
performed on a data area called the stack. Some opcodes deal with the el-
ements of the stack. POP pops the top element of the stack and discards

it. SWAP1 exchanges the top two members of the stack. They are stack op-
codes.System opcodes and stack opcodes act on calls and stack operations,
and these opcodes may cause callstack depth attack vulnerabilities.

– Invalid opcodes ratio. Invalid opcodes refer to the opcodes irrelevant to
the six vulnerabilities detected.

3.4 Low-dimensional Knowledgeable Features

During feature extraction, to make the trained model suitable for all smart con-
tracts, we first select 4-dimensional block features to highlight the relationship
between different opcode blocks. The 4-dimensional block features are the num-
ber of nodes, the number of edges, the maximum out-degree, and the maximum
in-degree of the control flow graph. These 4-dimensional features represent the
complexity of the smart contract, emphasizing the role of the features of the
smart contract itself in vulnerability detection. Then, we investigate the causes
of vulnerabilities in smart contracts and mine 8-dimensional attribute features
for opcodes associated with them. For example, unary-arithmetic and binary-
arithmetic opcodes modify integers in Ethereum, and improper arithmetic op-
erations can lead to integer overflow vulnerabilities; block information opcodes
are closely related to timestamp vulnerabilities and block parameter dependency
vulnerabilities; control flow opcodes are related to the re-entrancy vulnerability
stems from the attacker’s cyclic call changing the control flow. As shown in
Table 2, we combined the 4-dimensional block features and 8-dimensional at-
tribute features together for efficient vulnerability detection. When constructing
the opcode sequence flow graph, we used Depth-First-Search(DFS) algorithm,
and the time complexity is O(n). When constructing the adjacency matrix, the
time complexity is O(n2). Therefore, the time complexity of feature extraction
is O(n+ n2).

Features normalization. Due to the difference in feature extraction, the
first four-dimensional features are large integers, and the last eight-dimensional
features are decimals between 0 and 1. Therefore, if these 12-dimensional fea-
tures are directly used as the input of machine learning models, some machine
learning models (such as K-Nearest Neighbors) will only focus on the first four-
dimensional features while ignoring the last eight-dimensional features during
training. In addition, some machine learning models also have requirements for
the format of input data. To make Block-gram features suitable for most main-
stream machine learning models, we use linear normalization to process these
features. The normalization method is defined in Equation (1).

x∗
(n,f) =

x(n,f) − min
0<i<r

x(i,f)

max
0<i<r

x(i,f) − min
0<i<r

x(i,f)
(1)

where x(n,f) represents the value of the feature f in the n row.

4 Evaluation

4.1 Experimental Setup

Configuration. We perform experiments on a Windows 10 machine with 12th
Gen Intel Core 2.10 GHz CPUs and 32GB RAM and use the GPU of a 1060ti
graphics card to train the model and predict the results. To verify the effi-
ciency and the validity of the above 12-dimensional feature, we choose seven
state-of-the-art machine learning algorithms, such as eXtreme Gradient Boosting
(XGBoost), Random Forest(RF), K-Nearest Neighbors(KNN), Logistic Regres-
sion(LR), Decision Tree(DT), Naive Bayes, and Long short-term memory(LSTM),
as the training and detection model. We use the sklearn library in python3.6.8 to
build the machine learning algorithms. We also select accuracy, recall, F1-score,
and latency as the measured metrics of the model.

Datasets. We select 3000 smart contracts as the dataset for performance
analysis from Contractward [5], 70% for training, and 30% for testing. The size
of the dataset is 62.7MB. There are 871 contracts with vulnerabilities and 2179
contracts without vulnerabilities. The vulnerabilities of the dataset include in-
teger overflow and integer underflow vulnerabilities, callstack depth attack vul-
nerability, transaction-order dependence vulnerability, timestamp dependency
vulnerability, and re-entrancy vulnerability.

4.2 Performance Analysis

Detection performance. As shown in Table 3, in terms of accuracy, the max-
imum value of the seven models is 82.22% and the minimum value of the seven
models is 73.88% when they use Block-gram features. When they use features
extracted from opcodes by N-gram, almost all models’ accuracy drops. Block-
gram features perform better than features extracted by N-gram in terms of
accuracy. In terms of recall and F1-score, the performance of K-Nearest Neigh-

Table 3: Model Performance by Block-gram Features.

Model Feature Accuracy(%) Recall(%) F1-score(%) Latency(ms)

XGBoost Block-gram 82.22 93.27 88.16 0.2
N-gram 80.4 95.3 87.33 15

Random Forest Block-gram 81.77 95.00 88.10 0.3
N-gram 70.55 98.27 82.58 12

K-Nearest Neighbors Block-gram 75.44 84.51 83.01 0.004
N-gram 51.55 36.62 51.77 0.1

Logistic Regression Block-gram 75.44 98.28 85.04 0.01
N-gram 75.88 87.17 83.70 0.4

Decision Tree Block-gram 77.44 84.66 84.20 0.004
N-gram 76.11 83.72 83.27 2.6

Naive Bayes Block-gram 76.66 87.17 84.13 0.0003
N-gram 60.33 58.37 67.63 0.09

LSTM Block-gram 73.88 66.28 59.55 1
N-gram 69 75.10 58.42 90

bors and Naive Bayes drops significantly when they use features extracted by
N-gram. And other measured metrics of K-Nearest Neighbors and Naive Bayes
also dropped significantly. The two models poor perform when dealing with
N-gram features. The reason is that we have considered the real jump relation-
ship when the smart contract runs and the expert knowledge of six vulnera-
bilities but the N-gram method only extracts the combination of the opcode
sequence.Detection latency. As shown in Fig.3, the detection latency of all
models is greatly improved when they use Block-gram features. Among the seven
models, the detection latency of the decision tree model has reduced 650 times
when using Block-gram features compared with using N-gram. In addition, com-
pared with the traditional method Oyente and other machine learning methods
(for example, VSCL and EtherGIS), the latency of using Block-gram features
is also significantly reduced. Since VSCL and EtherGIS did not publish open-
source code, we directly cited the detection delay published in the paper. Their
experimental environment is far better than our work. The reason is that the
dimension of the feature space extracted by N-gram is too high, as high as tens
of hundreds of dimensions during the initial extraction. In training, the features
will be expanded up to tens of thousands of dimensions. When using Block-gram
features, the initially extracted feature space is only 12-dimensional. Even if it
needs to expand during the training process, it is only 15-dimensional at most.
Significant differences in feature space dimensions lead to differences in latency.
The experimental results demonstrate that Block-gram features are efficient and
can be used by mainstream machine learning models.

Fig. 3: The Latency of models

5 Conclusion

This paper addressed improving the detection efficiency for the quick detec-
tion requirements of large-scale smart contracts. We only used extensible 12-
dimensional features mining from bytecode and opcode. The low-dimensional
features will speed up the detection time 25 to 650 times without influencing
the model performance (accuracy etc.). We can also extend these features to
support more vulnerability detection and security analysis in the future. Com-
pared with the existing thousand-dimensional feature space, the features improve
the detection efficiency and extend the detection range. The evaluation based
on seven state-of-the-art learning-based methods has shown the effectiveness of
Block-gram features and can significantly improve detection efficiency.

Acknowledgment

This work is partially supported by the National Natural Science Foundation
(62272248), the Open Project Fund of State Key Laboratory of Computer Ar-
chitecture, Institute of Computing Technology, Chinese Academy of Sciences
(CARCH201905, CARCHA202108), the Natural Science Foundation of Tianjin
(20JCZDJC00610), CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-2021-
025A) and Sponsored by Zhejiang Lab (2021KF0AB04).

References

1. S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang, “Blockchain-enabled
smart contracts: architecture, applications, and future trends,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 49, no. 11, pp. 2266–2277, 2019.

2. F. Ma, Y. Fu, M. Ren, M. Wang, Y. Jiang, K. Zhang, H. Li, and X. Shi, “Evm*:
from offline detection to online reinforcement for ethereum virtual machine,” in
2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2019, pp. 554–558.

3. A. R. Sai, C. Holmes, J. Buckley, and A. L. Gear, “Inheritance software metrics on
smart contracts,” in Proceedings of the 28th International Conference on Program
Comprehension, 2020, pp. 381–385.

4. T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of auto-
mated analysis tools on 47,587 ethereum smart contracts,” in Proceedings of the
ACM/IEEE 42nd International conference on software engineering, 2020, pp. 530–
541.

5. W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Automated
vulnerability detection models for ethereum smart contracts,” IEEE Transactions
on Network Science and Engineering, vol. 8, no. 2, pp. 1133–1144, 2020.

6. E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore,
D. Park, Y. Zhang, A. Stefanescu et al., “Kevm: A complete formal semantics of
the ethereum virtual machine,” in 2018 IEEE 31st Computer Security Foundations
Symposium (CSF). IEEE, 2018, pp. 204–217.

7. J. Krupp and C. Rossow, “{teEther}: Gnawing at ethereum to automatically ex-
ploit smart contracts,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 1317–1333.

8. L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts
smarter,” in Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 254–269.

9. B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart contracts for
vulnerability detection,” in 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2018, pp. 259–269.

10. E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey, “Ethir: A framework
for high-level analysis of ethereum bytecode,” in International symposium on au-
tomated technology for verification and analysis. Springer, 2018, pp. 513–520.

11. X. Yu, H. Zhao, B. Hou, Z. Ying, and B. Wu, “Deescvhunter: A deep learning-based
framework for smart contract vulnerability detection,” in 2021 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2021, pp. 1–8.

12. K. Gai and M. Qiu, “Reinforcement learning-based content-centric services in mo-
bile sensing,” IEEE Network, vol. 32, no. 4, pp. 34–39, 2018.

13. F. Mi, Z. Wang, C. Zhao, J. Guo, F. Ahmed, and L. Khan, “Vscl: Automating
vulnerability detection in smart contracts with deep learning,” in 2021 IEEE In-
ternational Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2021,
pp. 1–9.

14. Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract vulner-
ability detection using graph neural network.” in IJCAI, 2020, pp. 3283–3290.

15. Q. Zeng, J. He, G. Zhao, S. Li, J. Yang, H. Tang, and H. Luo, “Ethergis: A vulner-
ability detection framework for ethereum smart contracts based on graph learning
features,” in 2022 IEEE 46th Annual Computers, Software, and Applications Con-
ference (COMPSAC). IEEE, 2022, pp. 1742–1749.

16. T. Li, Y. Fang, Y. Lu, J. Yang, Z. Jian, Z. Wan, and Y. Li, “Smartvm: A smart
contract virtual machine for fast on-chain dnn computations,” IEEE Transactions
on Parallel and Distributed Systems, 2022.

17. H. Qiu, M. Qiu, G. Memmi, Z. Ming, and M. Liu, “A dynamic scalable blockchain
based communication architecture for iot,” in International Conference on Smart
Blockchain. Springer, 2018, pp. 159–166.

18. K. Gai, Y. Wu, L. Zhu, Z. Zhang, and M. Qiu, “Differential privacy-based
blockchain for industrial internet-of-things,” IEEE Transactions on Industrial In-
formatics, vol. 16, no. 6, pp. 4156–4165, 2019.

19. Z. Tian, M. Li, M. Qiu, Y. Sun, and S. Su, “Block-def: A secure digital evidence
framework using blockchain,” Information Sciences, vol. 491, pp. 151–165, 2019.

20. F. Contro, M. Crosara, M. Ceccato, and M. Dalla Preda, “Ethersolve: Computing
an accurate control-flow graph from ethereum bytecode,” in 2021 IEEE/ACM 29th
International Conference on Program Comprehension (ICPC). IEEE, 2021, pp.
127–137.

