
1 23

CCF Transactions on Networking

ISSN 2520-8462

CCF Trans. Netw.
DOI 10.1007/s42045-020-00044-9

Blockchain-driven anomaly detection
framework on edge intelligence

Xueshuo Xie, Yaozheng Fang, Zhaolong
Jian, Ye Lu, Tao Li & Guiling Wang

1 23

Your article is protected by copyright and

all rights are held exclusively by China

Computer Federation (CCF). This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Vol.:(0123456789)1 3

CCF Transactions on Networking
https://doi.org/10.1007/s42045-020-00044-9

REGULAR PAPER

Blockchain‑driven anomaly detection framework on edge intelligence

Xueshuo Xie1 · Yaozheng Fang2 · Zhaolong Jian1 · Ye Lu1 · Tao Li2  · Guiling Wang3

Received: 15 June 2020 / Accepted: 29 October 2020
© China Computer Federation (CCF) 2020

Abstract
There are a large number of end devices in an IoT system, which may malfunction due to various reasons, such as being
attacked. Anomaly detection of the devices and the whole IoT system normally rely on the analysis of the huge amount of
log records generated by the end devices. How to protect the log records from being tampered with and realize the real-time
anomaly detection is a challenging task which is still not addressed. Existing works on anomaly detection by the emerging
and effective deep learning algorithms require the transfer of log data to cloud servers which incurs high communication
overhead and long detection latency, and is subject to the risk of being tampered. In this paper, we propose a novel and
efficient hierarchical framework for online anomaly detection in IoT systems atop Blockchain and smart contracts. At the
device layer of the hierarchical framework, an efficient feature extractor is developed to preprocess the raw log data which
greatly reduces the size of data to be transferred while keeps sufficient information for the anomaly detection model to use.
At the cloud layer of the framework, deep learning models use the processed data from the device layer to build the detection
model and output normal workflow patterns. In the edge layer of the framework, a permissioned blockchain is built and a
series of smart contracts are developed which can guarantee data integrity and achieve automatic anomaly detection based
on the model output from the cloud layer. Extensive experiments demonstrate that our framework can reduce the ledger size
by 7.1% without detection accuracy reduction compared with traditional centralized solutions and the detection latency is
only 0.47ms in our prototype. Our feature extractor can speed up by 3.6x–7.3x times on the execution time with almost the
same CPU usage rate compared with state-of-the-art log parsers and encryption solutions, such as AES and RSA.

Keywords  Anomaly detection · Feature extractor · Smart contract · On-chain/off-chain

1  Introduction

Log analysis is an important tool for anomaly detection in
Internet of Things (IoT) systems. In a hierarchical IoT sys-
tem, a large number of heterogeneous devices may generate
a huge volume of log records of operations and activities
chronologically. When any anomaly happens, such as per-
formance degradation or device failure, log records can be
analyzed for troubleshooting and tracing source of malfunc-
tions. System administrators rely on log records for quick
diagnosis to locate errors and exceptions (Xu et al. 2019).
Thus, malicious attackers or dishonest participants are
incentivized to tamper with log records by adding, modi-
fying, or deleting them Pourmajidi (2018) to avoid being
detected, and there are frequent incidents of log tampering
in the real world. In addition to raw log records, the work-
flows extracted from the log files are also a target of attack.
Many existing anomaly detection systems (He et al. 2016)
train a classifier from the unstructured logs with specific

 *	 Ye Lu
	 luye@nankai.edu.cn

 *	 Tao Li
	 litao@nankai.edu.cn

	 Xueshuo Xie
	 xueshuoxie@mail.nankai.edu.cn

	 Yaozheng Fang
	 fyz@mail.nankai.edu.cn

	 Zhaolong Jian
	 jianzhaolong@mail.nankai.edu.cn

	 Guiling Wang
	 gwang@njit.edu

1	 College of Computer Science, Nankai University,
Tianjin 300350, China

2	 Tianjin Key Laboratory of Network and Data Security
Technology, Tianjin 300350, China

3	 New Jersey Institute of Technology, Newark, NJ 07102, USA

Author's personal copy

http://orcid.org/0000-0003-1697-8022
http://crossmark.crossref.org/dialog/?doi=10.1007/s42045-020-00044-9&domain=pdf

	 X. Xie et al.

1 3

labels, such as normal or abnormal, or mine unknown types
of anomalies (Lou et al. 2010). In these systems, normal
workflow are normally mined from log records and then are
used to identify execution anomalies in program logic flows
(Liu et al. 2019; Xiao et al. 2016). The summarized work-
flows are naturally an attack and tampering target of anniver-
saries. In this paper, we aim to protect the mined workflows
in addition to the log records by building a log storage and
analysis system with immutability, tamper-proof, and trace-
ability for log analysis.

To leverage the intrinsic immutability of blockchain, mul-
tiple existing works build log storage and analysis systems
atop blockchain (Huang 2019; Pourmajidi and Miranskyy
2018; Pourmajidi et al. 2019). Existing approaches that
leverage blockchain for log storage can be broadly classi-
fied into three categories: (1) raw logs are directly stored on
chain which incurs high storage overhead; (2) the ciphertext
are stored on chain which provides data privacy and secu-
rity but does not support spontaneous online data analysis
(Pourmajidi and Miranskyy 2018); and (3) the hash value
of log files are stored on chain for storage efficiency (Huang
2019). Even though the above works can achieve tamper
resistance in many scenarios, none of the works support effi-
cient automatic online log analysis, especially the analysis
for anomaly detection based on the emerging deep learning
methodologies (Du et al. 2017), which are in fact in a greater
need in the current anomaly detection systems.

Correspondingly, in this paper, we aim to build a tamper-
resistance log-based hierarchical anomaly detection frame-
work, named HADS, for IoT systems atop blockchain and
smart contract technologies. HADS is designed to support
efficient automatic online log analysis using deep neural net-
work (DNN) technologies as well as other emerging machine
learning and data mining technologies. Our design has three
objectives: (1) to reduce on-chain storage overhead while
support the potential heavy deep neural network training, we
need to smartly decide how to process the raw log records,
which (processed) data is stored on-chain and which data is
off-chain, and the data structure to be used; (2) to provide
automatic online anomaly detection and reduce detection
latency, we need to delicately design the smart contracts to
employ; (3) to accommodate the low processing capability
of edge devices while achieve spontaneous detection, we
need to architect the system components effectively.

There are multiple challenges to achieve aforementioned
objectives. Firstly, an effective feature extractor needs to be
designed that can run on low power devices to extract the
features for DNN training. Note that end devices generate a
huge amount of log files. It is not efficient to either transfer
all of them to the cloud server for DNN training nor store
and process them on-chain. Motivated by Osia et al. (2018),
a deep feature extractor will be delicately designed to remove
redundant data while keep sufficient information for DNN

traning. The second challenge lies in the construction of an
auto-update mechanism implemented by smart contract.
Note that in an IoT system, new log records are continu-
ously generated and new workflows are frequently identified.
The new workflows always require micro-updates by smart
contracts, but the pre-deployed smart contracts with limited
flexibility has difficulty in dealing with frequent workflow
changes and updates Shao et al. (2020). The last challenge in
actual deployment is that anomaly detection has to be timely
so that administrators can intervene in an ongoing attack or
a system performance issue Du and Li (2017); otherwise,
it is not useful. If we still adopt centralized solutions, e.g.,
cloud computing, log data will be collected in devices and
transferred to the central server in the service layer for DNN
training and inference, and finally the detected results are
sent back to devices. Such a procedure may have too long a
latency for devices to react to errors or anomalies in time.

To address the above challenges, our HADS framework
employs a hierarchical anomaly detection model, which can
reduce ledger size and detection latency while keep the same
detection accuracy. HADS pushes data preprocessing and
workflow detection from the centralized cloud to the dis-
tributed network edge and devices of the IoT system, which
can process logs and detect anomalies in real-time. We first
design an efficient feature extractor, named FLE, that can
reserve the feature information of log entries for real-time
extraction on the devices. FLE extracts features from the
unstructured raw log, realizes one-to-one mapping between
raw log entries and features, and achieves the separation of
on-chain and off-chain storage for features and large volumes
of logs. That is, the raw log entries will be stored off-chain,
which the extracted features will be stored on-chain. In the
edge layer of the IoT system, a blockchain is built and HADS
incorporates a smart contract-based dynamic management
mechanism for logs management, storage, and analysis. It
can transfer, commit and store features into the ledger and
dynamically convert workflow with micro-updates into the
smart contracts. In the service layer of the IoT system, any
DNN or other machine learning and data mining models can
be flexibly implemented and generate workflows from the
features received. A series of thorough experiments have
proved that HADS can reduce the ledger size and detection
latency while keep the same detection accuracy compared
with the traditional centralized solutions. The CPU usage
and execution time of FLE can speed up to 3.6x–7.3x times
compared with state-of-the-art log parsers and encryption
solutions, such as AES and RSA. In summary, this paper
makes the following contributions:

•	 A hierarchical blockchain-based anomaly detection
model on edge intelligence is designed which consists
of a feature extractor running on low-power devices,
an edge blockchain with on-chain/off-chain storage

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

and smart contract-based management, and a detection
(DNN) model running on the service layer to mine work-
flow from the features stored in the edge ledger.

•	 A feature extractor is developed to use heuristic rules to
convert the unstructured raw log into structured features
and establish a one-way mapping between the raw log
entries and features. Only the features are stored on-chain
to reduce data size while satisfy the training require-
ments. Feature and raw data mapping are stored in an
off-chain server for tampering detection.

•	 A series of smart contracts are developed to manage log
data storage, automatically update the detection mecha-
nism based on the dynamically generated workflow by
the DNN model, and conduct anomaly detection with low
latency.

The remainder of this paper is organized as follows: Sect. 2
introduces the background including log analysis, block-
chain, and edge intelligence. Section 3 presents the HADS
design in detail. The implementation of on-chain/off-chain
storage is introduced in Sect. 4 and smart contract imple-
mentation in Sect. 5. We report the system prototype and
performance evaluation in Sect. 6. A review of related work
is given in Sect. 7. Finally, Sect. 8 concludes the paper.

2 � Technical background

In this section, we introduce the background of the main
technologies HADS employs, including the log-based
anomaly detection, blockchain and smart contract, and edge
intelligence.

2.1 � Anomaly detection based on log analysis

Anomaly detection aims at uncovering abnormal behaviors
from large-scale unstructured log data in a timely manner
through training classifiers or mining workflow. Existing
works mainly follow four steps: log collection, log parsing,
feature extraction, and anomaly detection (He et al. 2016).
The collected unstructured raw log entry always records
a specific system event with a set of information fields:
timestamp, alarm level, and raw message content. The
logs normally have two parts: the constant part records
the event type of the log message and the variable part car-
ries the runtime information of interest (Zhu et al. 2019).
Regarding the second step, log parser is essential for
anomaly detection and it converts the raw logs into struc-
tured log sequences or events. Currently, there are three
main methods to design accurate and efficient log pars-
ers: (1) frequent pattern mining, such as SLCT Vaarandi
(2003), LFA Nagappan and Vouk (2010), and LogCluster
Vaarandi and Pihelgas (2015; 2) clustering, such as LKE

Fu et al. (2009), LogSig Tang et al. (2011), LogMine Ham-
ooni et al. (2016), SHISO Mizutani (2013), and LenMa
Shima (2016; 3) heuristic rules, such as AEL Jiang et al.
(2008), IPLoM Makanju et al. (2012), Spell Min and Li
(2017), Drain He et al. (2017), POP He et al. (2018), and
MoLFI Messaoudi et al. (2018). All of these log parsers
extract the log event by automatically separating the con-
stant part and variable part, and further transform each log
entry into a specific event (Zhu et al. 2019). Considering
the length and token position of log entries, an efficient
log parsing based on heuristic rules is proved to have bet-
ter performance (Zhang et al. 2019). Inspired from the
previous research, in this paper, we design a lightweight
and automatic feature extractor to generate the structured
log sequences and only upload them to on-chain storage
instead of raw logs. We also choose nine state-of-the-art
of these log parsers as the baselines to compare the CPU
usage and execute time with our feature extractor.

Regarding the fourth step, anomaly detection, multiple
models are proposed. To mine the workflow from log data,
some data mining methods, such as building an automa-
ton for the workflow of each management task based on
normal executions, check log messages against a set of
automata for workflow divergences in a streaming manner
(Xiao et al. 2016). A data-driven approach on long short-
term memory (LSTM) has also been proposed in Du et al.
(2017) to mine workflows from a large volume of sys-
tem logs for anomaly detection. The mined workflows are
then used to identify execution anomalies in program logic
flows and output the necessary context information for
further diagnosis. We can divide the log-based anomaly
detection models into supervised learning and unsuper-
vised learning. However, most of the models, such as sup-
port vector machine (SVM), Principal component analysis
(PCA), and the aforementioned LSTM DNN, can not be
trained on or inference directly from the raw unstructured
text. The direct input of the models is normally numerical
results, such as feature matrix. The matrix can be extracted
from the log sequences by different windows technologies
to count the occurrence number of each event, based on
the results of aforementioned step three and four.

Since logs are used as the digital evidence, the storage
of logs should be immutable, traceable, and tamper-proof.
A blockchain-based log system can prevent log from being
tampered by sealing logs cryptographically in a hierar-
chical ledger, as presented in Pourmajidi and Miranskyy
(2018). Another two similar works provide immutable log
storage as a service (Pourmajidi et al. 2019; Rane and
Dixit 2019). To avoid the high cost of storing big files in a
blockchain, Huang (2019) utilized the InterPlanetary File
System (IPFS) to store log files, used Ethereum to store the
hash of log files, and deployed a smart contract to create
an index for log files.

Author's personal copy

	 X. Xie et al.

1 3

2.2 � Blockchain and smart contract

Blockchain is a decentralization platform to maintain an
ordered list of blocks, named ledger, which “chained” back
to the previous block through containing a hash of the previ-
ous block. Every block contains a list of transactions organ-
ized as a tree structure, such as Merkle tree in Bitcoin. The
transactions store information, such as the sender, receiver,
and data, or the (compiled) code of smart contracts, or
parameters of function calls of smart contracts. A node in
blockchain will send a signed transaction using its private
key to the network and validated and propagated by other
nodes. Miners are responsible for aggregating valid new
transactions into blocks through mining, adding the blocks
to the ledger, and propagating the blocks to the network. To
govern the addition of new blocks, a consensus mechanism,
such as Proof-of-Work (PoW) or Proof-of-Stake (PoS), is
used for validating and broadcasting transactions and blocks,
resolving conflicts, and achieving the incentive scheme. Due
to the security properties of the hash function, computational
constraints, and consensus protocols, the data contained in
a committed transaction and the historical transactions are
seen as immutable in practice. However, every participant
can join the network to access all the information on block-
chain and validate new transactions because there is no
privileged user. Besides, the size of the data on blockchain
and the transaction processing rate has limited the scalability
Xu et al. (2018).

Smart contract is a program that can be deployed and
run on a blockchain to enable wider use of blockchain in
scenarios. We can use it to express triggers, conditions, and
business logic that will enable more complex programmable
transactions, such as the signature of the transaction initiator
authorizes the data payload of a transaction or the creation
or execution of a smart contract. Obviously, a smart contract
should always be deterministic as it is the enforcement force
as a judge for the whole network. Therefore, a smart contract
should keep integrity and prevent introducing ambiguity,
bugs, or vulnerabilities. Even though some cryptography
assures its strong integrity and determinacy throughout its
life cycle, we still need to delicately design when it is gener-
ated and thoroughly tested for security before it is deployed
in a blockchain and its integrity should be maintained during
execution.

Ethereum is currently widely used as a public and pri-
vate blockchain that supports Turing-complete language,
such as Solidity, compile smart contracts to specify transac-
tion processing. To deploy a smart contract that possesses
code pieces, an account balance, and a key-value memory
in Ethereum is similarly as a transaction confirmation. Any
deployed smart contracts are identified by an address and
can be triggered by transactions or contract messages to run
autonomously in the blockchain. Ethereum uses gas to limit

the number and complexity of transactions that can fit into a
block, or prevent infinite contract execution as DoS attacks.
An account must enclose sufficient amounts of gas to suc-
cessfully commit transactions or call a contract function.
The latency between a transaction submitting and acknowl-
edgment in Ethereum is around 3 min since there is a 14-s
block interval with 11 confirmation blocks, compared with
around 1 h on Bitcoin. In this paper, we implement a pro-
totype of HADS on the private Ethereum, so the detailed
gas consumption is not our main consideration. However,
we still optimize our implementation to minimize costly
operations and avoid vulnerabilities using security analyz-
ers before deployed it on the actual network Tsankov et al.
(2018).

2.3 � Edge intelligence

The integration of artificial intelligence (AI) and edge com-
puting results in new interdisciplinary edge intelligence. To
fully unleash the potential of the large volumes of data at the
edge, there is an urgent need to push the computing tasks
and services of AI from the network core to edge (Ren et al.
2019; Zhou et al. 2019). Currently, the cloud-only approach
requires the transfer of significant amounts of data from
devices to the cloud, which is inefficient and dispensable.
After data transfer, all the processing steps, such as pre-
processing, feature extraction, training, and inference, are
conducted in a centralized cloud-based layer. This leads to
high communication and computation cost, considering the
limitation of device energy, communication bandwidth, and
server storage (Tang et al. 2019; Thomas et al. 2019). As the
computational resources in devices become more powerful
and energy-efficient, we can in fact move many computa-
tions out of the cloud and onto a hierarchy of IoT devices,
such as features extractor and local inferences. Consequently,
we need only transmit some processed digest of data and
inference outcomes, instead of all the raw data, from end
devices to cloud servers. This can significantly reduce data
transfer, energy consumption and network traffic. However,
the conventional training models do not account for the fact
that the smart devices in the system have already performed
a local inference. Also, another primary concern is that the
prediction accuracy of models will be influenced or not.
Inspired by the development of edge intelligence Zhou et al.
(2019), there are interesting solutions on edge computing
that can offload some computational and storage capability
from the cloud to the network edge or devices to reduce the
communication and computation latency and improve the
quality of services (Lyu et al. 2020; Yin et al. 2018). One
possible solution is a fine-grained, layer-level computation
partitioning strategy, based on the data and computation
variations of each layer within a DNN. Because the layer
characteristics of DNN algorithms and hierarchical structure

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

of IoT are similar so that we can integrate them together.
The DNN partitioning has significant latency reduction and
energy advantages over the status quo approach Kang et al.
(2017). Another solution is to design a deep feature extrac-
tor that can run on low-power devices to extract approved
information using for the model, and achieve high accuracy
for primary tasks while removing the redundant data and
preserving the sensitive information Osia et al. (2018, 2020).

3 � The system architecture of HADS

HADS employs a hierarchical architecture. In this section,
we present the details of HADS. Specifically, in HADS,
a feature extractor first preprocesses raw logs on devices
and generate features of the logs. A feature matrix is built
accordingly and dynamically adjusted, which is used to mine
legal workflows in real time. Using legal workflows as tem-
plates, smart contracts are auto-updated to conduct anomaly
detection.

3.1 � Hierarchical architecture

As shown in Fig. 1, HADS employs a multi-layer structure
for hierarchical IoT systems which consists of device layer,
edge layer, service layer, and application layer.

•	 Device Layer: End devices generate a large amount of
raw logs, whose online preprocessing can save storage
and reduce communication overhead. At the device layer,
we deploy a feature extractor based on regular expres-
sion, heuristic rules, and one-way function to convert
the unstructured raw log entries into structure features,
such as the hash value of each log entry. This feature
extractor’s log preprocessing can reserve the features
of each log entry for DNN training in the service layer.
Only the extracted features with reduced size will be
uploaded to the edge blockchain for immutable stor-
age. , and will be used as input for DNN training at the
service layer. Finally, these preprocessed features which
remains important log information are used to train the
DNN model at the service layer.

•	 Edge Layer: At the edge layer, HADS runs a permis-
sioned blockchain on the decentralized edge server,
such as private Ethereum and Hyperledger, where legal
users are granted identity credentials for user authoriza-
tion upon blockchain deployment. The edge blockchain
guarantees that all the data assets, such as features, work-
flows, and smart contracts will not be tampered with.
After being processed on the edge devices, the features
will be stored into the edge ledger for tamper-proof stor-
age and follow-up training. A mapping between raw logs
and structured features is stored into an off-chain file sys-
tem, such as IPFS. At this layer, HADS employs a series
of smart contracts, such as register contract, device snap-

Fig. 1   The HADS overview

Author's personal copy

	 X. Xie et al.

1 3

shot contract, workflow contract, feedback contract, and
verifying contract to complete workflow-based anomaly
detection and achieve collaborative defense in the entire
network.

•	 Service Layer: A data-driven DNN model is deployed
to mine legal workflows as follow-up detection template
or train a classifier for anomaly detection. The training
data are the preprocessed features stored in the ledger.
Different window sizes are used to count the occurrence
of each feature and further form a feature matrix, which
is used by the DNN model as the input. (Note that in
practice, we can replace the DNN model with any other
log-based anomaly detection models.) Once the DNN
produces new output workflows, a series of smart con-
tracts will dynamically convert the workflows into smart
contracts which are used to detect the anomalies in real-
time and report to the security policies.

•	 Application Layer: A variety of smart applications are
designed to visualize the state of the entire network and
devices.

3.2 � Feature extractor

As shown in Fig. 2, our online feature extractor, named
FLE, consists of two components: (1) a parser that first con-
verts the raw log entries into structured log events and (2)
a Hash-map that generates a hash value for each structured
log event. Note that the hash values are the extracted features
of the raw log entries.

Parser. The raw log entries are usually unstructured and
can not be directly used for deep learning model training.
Here is an example of raw log sample: “ Li (Invalid user web-
master from 10.251.42.*, check pass; user unknown, Con-
nection closed by 10.251.42.*). Given a raw log sequence
L1, L2, L3,… , Lm , we use the parser to map it into a log event
sequence E1,E2,E3,… ,Em , where m is the total number of
log events. The relationship can be formulated as follows:

The previous works on log parsers Zhang et al. (2019) shows
that the natural characteristics of logs follow several light-
weight heuristic rules: (1) The parameters, such as IP and
port number, should be eliminated as the variable parts; (2)
The log entries with the same length are likely to associate
with the same event; (3) The same tokens in the same posi-
tions of different log entries are likely to associate with the
same events. In practice, the parsers under these heuristic
rules are usually lightweight so that they can run on low-
power devices.

In the parser step, we apply designed regular expres-
sions (RE) to the log entries. Each log entry can be
described with length, first token and last token accord-
ing to the above heuristic rules. Specifically, based on
the domain knowledge, administrators setup the regular
expressions (RE) for some commonly-used variables, such
as IP address, port number, etc. When a token from the raw
log entry is matched to regular expressions, we replace

(1)Ei = Parser(Li), for i ∈ (1, 2,… ,m).

Fig. 2   The main steps of feature
extractor that can reserve the
feature of raw logs

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

the token with an asterisk. Then, the processed log entry
is classified to different groups with the same length, the
same first token and the same last token. For example,
“Invalid user webmaster from *” and “Connection closed
by *” are two log entries after applying regular expres-
sions. The length of the first log entry and the second log
entry are 5 and 4. The first tokens of them are “Invalid”
and “Connection” respectively. Obviously, they belong to
different groups because of different lengths and differ-
ent first tokens. Finally, the new log entry will match an
existing log event in the event list. If not match, it will
generate a new event and update the event list. This helps
the administrators to dynamically maintain the event list.

Furthermore, each raw log entry is classified into the
corresponding log event based on the structure. For exam-
ple, “Invalid user webmaster from 10.251.42.*” and “Inva-
lid user webmaster from 17.25.44.*” are two different log
entries. However, they belong to the same log event “Invalid
user webmaster from *”. To prepare for the input data for
anomaly detection model training, our parser processes the
raw log data by removing noises and extracting the struc-
tured event information.

Hash-map. From the above step, the raw log will con-
vert to a log event. Such as, “Invalid user webmaster from
10.251.42.*” convert to “Invalid user webmaster from *”. In
the subsequent use of windows technology to generate the
feature matrix, the log event is still so textual that difficult
to count the occurrence number of log events. Furthermore,
the textual log event contains much useful information and
leakage to the malicious attackers that can not store in the
public ledger. In the hash-map step, the main purpose is
to prevent malicious attackers and semi-honest participants
from obtaining sensitive information as well as mining sec-
ondary usage information from the event content. One chal-
lenge is to minimize the data size without affecting the final
performance of the anomaly detection model. Therefore, we
establish a one-way mapping (or hash-mapping) from log
entries to hash values so that no one can discover sensitive
information from the hash value. We can formulate the map-
ping as follows:

where Fi is the corresponding hash value of log event Ei , m
is the total number of log events and Hash is one of the one-
way functions called Hash function. Hash value representa-
tion has some advantages. First, it is content independent,
which means the malicious attackers or semi-honest par-
ticipants are not able to infer the content of log event from
it because of the security mechanism. Second, it largely
reduces the data size because raw log data will not be stored
to the edge blockchain ledger.

(2)Fi = Hash(Ei), for i ∈ (1, 2,… ,m),

In Hash-map step, given a new log event, we first check if
it already exists in the event list which is a set of log events.
If the log event already exists, we retrieve the correspond-
ing hash value from the key list which is a set of hash values
mapping from the log events. Otherwise, we insert this new
log event to the event list, calculate the hash value with hash
function and add the hash value to the key list. Finally, each
raw log entry is represented to a hash value as the feature
and is uploaded to the on-chain storage. Meanwhile, we also
reserve the hash mapping relationships in the off-chain stor-
age so that these fine-grained mappings can be utilized to
identify the tampering behavior or be applied to the smart
applications.

3.3 � Feature matrix generation and detection model
training

From raw logs, FLE extracts features in the format of strings.
However, contemporary log-based anomaly detection mod-
els normally use numeric features as inputs. Thus, we create
a numerical feature matrix based on the following procedure:
We use windows technologies, such as fixed windows, slid-
ing windows or session windows, to count the occurrence
of specific log events. The window size ranges from 1 to n.
There are m features in total. The feature numerical matrix
M can be computed as:

where n is the total number of windows and m is the total
number of log events. Here Fi represents log events with
feature i and Count(Fi) counts the occurrence of those events
under the specific window size.

Taking the feature matrix M or the workflow G as inputs,
we are able to train an anomaly detection model (He et al.
2016; Lou et al. 2010). Motivated by Du et al. (2017), we
build a Long Short-Term Memory (LSTM) neural net-
work as the anomaly detection model at the service layer.
In order to translate the workflow G into a smart con-
tract, we use a directed graph G = (V ,E) to represent the
workflow, where V = {vi|i ∈ [1, 2,… ,N]} is the set of Fi ,
E = {(vi, vj)|vi, vj ∈ V , i ≠ j} is the set of edges. The adja-
cency matrix S of the graph G is calculated as:

3.4 � Auto‑update mechanism of smart contract

In this part, we focus on how to translate the workflow G or
the adjacency matrix S into a smart contract. The translation

(3)
Mij = Count(Fi), for i ∈ (1, 2,… , n) and j ∈ (1, 2,… ,m),

(4)Si,j =

{
1, if (vi, vj) ∈ E, or (vj, vi) ∈ E, or i = j

0, otherwise

Author's personal copy

	 X. Xie et al.

1 3

processes are dynamic as the logs are being generated on the
devices all the time. As shown in Fig. 3, any changes made
in the workflow will call for a transaction. Then, the updated
workflow is uploaded to the account address of smart con-
tract in the edge blockchain. Our smart contract automatic
update mechanism mainly consists of two parts: workflow
micro-updates and global parameter updates.

Workflow micro-updates. Intuitively, each log entry, log
event, or log feature is the execution step of a log printing
statement in the source code. Every task of end devices or
applications will generate a sequence of log entries. The
order of log entries produced by a task represents the execu-
tion order of program events. In general, there are three types
of program flows: sequences, branches, and loops. In Fig. 3,
each node in the workflow denotes a log event. Here are the
examples of a loop “S2-S3-S4-S2” and a branch “S5-S7-S9”.
Given a large volume of log records, we can train one work-
flow in a simple network or a series of workflows in complex
networks. A workflows reflect the normal execution flow of
a program. Malicious behaviors usually attack the normal
execution by disrupting the order of log entries, which also
causes the nodes changing in the workflows. By capturing
the normal execution patterns of a series of workflows, we
can detect the anomaly behaviors in the workflows.

When we use workflow for anomaly detection, we first
check whether the context of log event conforms with the
rules of normal program flow. For example, if the current log

event is “S3”, the previous log event must be “S2”, otherwise
the program flow is abnormal. Therefore, workflow-based
anomaly detection is important for diagnosing the anoma-
lies and understanding how and why they happen. Workflow
based anomaly detection provides users the contextual infor-
mation of last events instead of only providing the diagnose
results e.g. either normal or abnormal. In addition, workflow
based anomaly detection models are more robust than the
log-based anomaly detection models because workflow in
a normal environment does not change dramatically. The
normal running process follows the logic of the code, espe-
cially IoT devices usually only perform some specific tasks.

In practice, micro-updates on existing workflows are fre-
quently needed during system upgrades, code optimizations,
task changes and etc. For example, the original branch of the
former workflow is “S5-S7-S9” or “S5-S6-S8-S9” in Fig. 3.
When the administrator optimizes a module which produces
a different log print statement, the previous log event “S8” is
changed to “S10”. In this case, we should adjust the updated
workflow to ensure that our anomaly detection algorithm
works correctly. In the new workflow, the original branch is
replaced with “S5-S7-S9” or “S5-S6-S10-S9”. In fact, once
we have deployed the trained workflow, we can simply adjust
it with micro-updates. Such as the feature “S8” in a previ-
ous workflow is replaced with “S10” after a period of time
during system upgrades. This feature replacement reflects
the program execution flow changes. Any drastic changes
certainly cause an alarm and attract the administrator’s

Fig. 3   Smart contract auto-
update following micro-updates
of workflow

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

attention. Thus, micro-updates in workflow will reduce oper-
ating costs and keep the system stable in the running time
of our HADS model.

Global Parameter Updates. As described in Sect. 2.2,
smart contracts are programs that run on a blockchain, and
cannot be upgraded once it is deployed. This is because the
smart contract data stored on the blockchain is immutable.
However, anomaly detection is a dynamic process because
the attack was unexpected. The workflow for anomaly detec-
tion is relatively stable compared with other classifiers, but
the workflow is still variable in a period. Thus, we need
to upgrade the smart contracts when some micro-updates
occur. Due to the inborn immutability of smart contracts,
lacking flexibility makes them cumbersome in cases when
frequent changes and updates are required. Thus, we need to
balance the immutability and upgradability in using smart
contracts in security mechanisms otherwise extra overheads
and costs are needed.

One possible solution is using an on-chain registry con-
tract to maintain the mapping between user-defined names
and the blockchain addresses of the registered contracts.
These addresses are advertised off-chain. Every new contract
registers its name and the address to the registry contract
after being deployed, and it is retrieved for the latest version.
Smart contracts can be upgraded by replacing the address of
the old version in the registry contract with the address of
the new version. This replacement will not break the depend-
ency between the upgraded version and other smart contracts
that depend on its functions. This upgrade can be imple-
mented by updating the variable parameters that store the
contract address in the registry contract because the registry
contract have a permission control module to maintain the
writing permission. Note that all the previous values of the
variable parameters are still stored on the ledger.

In HADS, we deploy a private Ethereum at the edge layer,
and we also implement a workflow contract to maintain the
workflow with micro-updates. In the workflow contract, we
definite a variable to store workflows. At first, the workflow
contract needs to register its address in a registered contract
and maintain write permission for the geth client of DNN
models. Only the geth client at the service layer can write
the variable parts of the workflow contract. In Ethereum,
the variable as a global parameter is stored in the leaf nodes
of the World State trie corresponding to the smart contract
account, at an account storage trie in account state of world
state trie of the smart contract account. As shown in Fig. 3,
the workflow is ultimately stored in the leaf node of the
Account Storage trie. And then, when the micro-updates of
workflow occur, a geth client will submit a transaction that
stores the new workflow, to the address of workflow contract.
After commit, consensus, mine, etc., this transaction will
be verified and committed to the transaction trie of a new

block in the ledger. Finally, the world state of blockchain
will update the world state trie from the new transactions in
the transaction trie. So, the new workflow will be updated to
the global parameters of the corresponding smart contract.
Obviously, the previous workflows are still stored on the
ledger. From now, smart contracts will be updated through
consensus on the global parameters that will change with
some micro-updates in a workflow. Furthermore, the smart
contract ensures the trustable of workflow and achieves the
collaborative defense by the consensus of the entire network.

4 � On‑chain/off‑chain storage scheme

In this section, we implement an on-chain/off-chain stor-
age scheme to achieve the tamper-proofing storage for large
volumes of logs demonstrated in Fig. 4. To reduce the ledger
size, we only store the features to the on-chain storage for
DNN training. In addition, we store the mapping from fea-
tures to raw log entries to the off-chain storage, which is able
to help us detect tampered logs.

4.1 � Storage scheme implementation

Due to the ledger’s full replication across all participants of
the blockchain, where it is kept permanently, the capability
of storing these data has been greatly restricted. Generally,
storing large volumes of data within a single transaction is
impossible due to the limited size of the blocks. (For exam-
ple, Ethereum has a gas limit on the number, computational
complexity, and the data size of the transactions that can be
included in a block.) To solve this problem, one possible
solution is to store the hash value of the raw data on-chain
and the raw data off-chain. The hash value is generated by a
hash function, such as SHA-256, which is a one-way func-
tion. It is easy to compute, but hard to reverse compute as a
random input. We use the transaction on a blockchain that
has the same hash value to guarantee the integrity of the
hash value as well as the raw data. The integrity of the raw
data can be validated against the on-chain hash value, and
any changes of the raw data will also be detected by the hash
value stored on the blockchain.

As mentioned in Sect. 3.2, we obtain a feature and a map-
ping between the feature and the raw log entry when a new
raw log entry is being preprocessed by FLE on the device.
The feature is constructed with a unique symbol that does
not contain any knowledge on the log entry, so it can be
stored in a trustless blockchain. The size of raw log data
is always bigger than the size of the hash value, and even
through one bit of the data changes, the hash value would
be different. When we use the blockchain for large amounts
of tamper-proof logs storage, we can use the feature for on-
chain storage, and the mapping for off-chain storage.

Author's personal copy

	 X. Xie et al.

1 3

On-chain Storage. From FLE, we can obtain the features
for the service training and transmit it to an edge node with
JavaScript. The edge node generates a transaction to com-
mit the features and is stored into ledger after achieving
consensus. Now, we consider how to store them better in
the edge layer because we will read them from the ledger
to train a DNN model at the service layer. In the transac-
tion, we design a storage structure that only stores a qua-
ternion (or 4-tuple) to the edge nodes. The quaternion (or
4-tuple) mainly consists of a timestamp, blockchain address,
features, and optional field. The timestamp field mainly is
used to ensure the feature sequences in order; the blockchain
address field can record a feature coming from which device,
and also can be used to separate the feature sequences for
fine-grained services; the features field mainly record the
data upload from the devices; the optional field will record
some additional information for the normal requirements
in service.

Off-chain storage. From FLE, we can obtain the hash
mapping between features and raw log entries and transmit
them to an edge or cloud file system, such as IPFS, for off-
chain storage. We use a key-value storage structure, where
the key represents features and the value points to the raw
log entries. In HADS, we compute a hash value for each
log entry instead of a big log file that consists of many log
entries. This will help us to easily find which log entry has
been tampered with. Furthermore, we will recover most of
the content that has been tampered with from the event rep-
resented by hash value and also provides further information
for other smart applications.

Implementation. The core of the storage scheme is that the
FLE can run on resource-constrained devices. As mentioned

in Sect. 3.2, FLE can extract the structured features to form
sequences for the DNN training from the unstructured raw
log. This requires it to run in a fine-grained service. In
HADS, the hash value is computed by corresponding events
instead of raw log entries. So different log entries with the
same event will have the same hash value. Therefore, we use
the hash value to form the sequences will not influence the
feature matrix, and also the training accuracy of DNN. The
pseudocode of FLE is shown in Algorithm 1.

Fig. 4   The on-chain/off-chain separate storage scheme

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

Algorithm 1 FLE
Input: log entries
Output: on chain, off chain
1: event list = [e1, e2, ...];
2: hash list = [h1, h2, ...];
3: if (new log entries) then
4: reg log ← Regular Expression(log entries);
5: length ← Length(reg log);
6: first token ← Get F irst Token(reg log);
7: last token ← Get Last Token(reg log);
8: else
9: Wait(time);
10: end if
11: for event ∈ event list do
12: length event ← Length(event);
13: first token event ← Get F irst Token(event);
14: last token event ← Get Last Token(event);
15: if (length = length event) then
16: if (first token = first token event) then
17: if (last token = last token event) then
18: new event = event;
19: for hash ∈ hash list do
20: hash = look up(event);
21: new hash = hash;
22: end for
23: end if
24: end if
25: end if
26: end for
27: event list[].append(new event)
28: new hash ← Hash(new event)
29: hash list[].append(new hash)
30: on chain = new hash;
31: off chain = new hash & new event;
32: return on chain, off chain.

4.2 � Tampered detection

In HADS, because log files record the system behavior as
audit evidence, the model needs to meet the tamper-proof
requirements when storing log data. When tampering with
logs occurs, HADS can detect tampering behavior in time,
locate and recover some of the tampered content. Naturally,
we assume that the data stored on the blockchain is secure
and not easily tampered with, because the data stored in the
blockchain is immutable. Thus, the on-chain/off-chain stor-
age scheme can achieve the tamper-proof storage since the
features stored on-chain serve as a basis for detection.

In tampering detection, the main steps consist of acquisi-
tion, comparison and recovery. At first, we obtain the fea-
tures stored on-chain and the keys stored off-chain. The fea-
tures and the keys are all calculated from the corresponding
log events after processed by FLE. The on-chain features
can not be tampered by malicious attackers or dis-honest
participants. Then, we compare the features with keys in
order. If all of them keep the same, there is no tampering

behavior occurring; Otherwise, the corresponding off-chain
entries have been tampered. Finally, we can recover some
content (log event, except for the variable part of raw logs)
of the tampered entries stored off-chain. Because the features
stored on-chain still trustful, we can find the log event from
the event list and check the hash value. To reduce the system
overhead, we can make periodic detection or on-demand
detection.

4.3 � Efficiency and security analysis

In this part, we focus on the effectiveness and security of
on-chain/ off-chain storage schemes. Effectiveness refers to
that the features stored on-chain can satisfy the training steps
of subsequent DNN. Security refers to the features stored
on-chain that will not reveal more information and prevent
tampering.

Efficiency. In HADS, we use the features (a hash value
of log event) to replace the raw logs as the input of DNN
training and inference. This replacement can not influence
the performance of log-based anomaly detection models.
Because the direct input values of models are feature matrix,
which can use windows technology to count the occurrence
number of log events. In other words, the models do not care
about the content of raw logs. For example, there is a raw
log sequence in Fig. 4. If we calculate the hash values of
raw log entries, we can not distinguish the log events from
different hash values, such as “Feature 1, Feature 2, Feature
3, Feature 4...”, so we can not get the feature matrix from
this method. But, we calculate the hash value of log events
in HADS. The log entries with same events can reserve the
same hash values, such as “Invalid user webmaster from
10.251.42.*” and “Invalid user webmaster from 17.25.44.*”
have the same event “Invalid user webmaster from *”, so
they keep the same feature “Feature 1”. And then, we can
count the “Feature 1” occurrence number is “2” in the fea-
ture matrix.

Security. In HADS, the features on-chain is a hash value of
log event. The security properties of the one-way function or
hash function can guarantee the security of HADS.

One-way Function: A function f ∶ {0, 1}∗ → {0, 1}∗ is a
one-way function, if and only if:

(1)	 for ∀ x , f(x) can be easily calculated by a polynomial
time algorithm;

(2)	 for a given f(x), x can not be calculated by a polynomial
time algorithm.

Even though the malicious attackers or dis-honest partici-
pants obtain the features stored on-chain, they are not able

Author's personal copy

	 X. Xie et al.

1 3

to decipher the corresponding raw logs or log events in poly-
nomial time. Since the features on-chain are just hash values
of log events, they will not leakage any information. The
hash function or one-way function is a compressing algo-
rithm that loses a lot of information and reduces the data
size. After processing by hash function or one-way function,
no one can recover the raw content easily, and the feature
sequence only reserves the order information.

5 � Smart contract‑based dynamic
management mechanism

In this section, we implement a smart contract-based
dynamic management mechanism to achieve the secure stor-
age, management, and analysis in Fig. 5. The dynamic man-
agement mechanism has three components: (1) data secure
storage. The process includes submitting, mining, verifying
the transactions that stored in the data field; (2) smart con-
tract auto-update. As mentioned in Sect. 3.3, we update the
global parameters for the smart contract’s transaction; (3)
real-time detection. When the devices upload the feature, it
will get the detection result and feedback policies through a
device snapshot contract, verifying contract, and feedback
contract.

5.1 � Mechanism overview

In HADS, the core mechanism is five smart contracts: reg-
istry contract (RC), device snapshot contract (DSC), work-
flow contract (WFC), feedback contract (FC) and verifying
contract (VC). The last four contracts need to register in RC
before they are called. We give an overview of the smart
contract-based dynamic management mechanism in Fig. 5,
which mainly consists of the “Edge-Service” loop for work-
flow micro-updates and the “Device-Edge” loop for feature
storage and real-time detection.

“Edge-Service” Loop. The workflow-based DNN anomaly
detection service downloads feature sequences from the edge
ledger, then generates the workflow for anomaly detection.
The detection flow consists of WFC, VC, and FC. WFC
stores the workflow where the smart contract is and the
workflow will be updated with micro-updates if its content
changes. VC uses the workflow to determine whether the
feature is abnormal. If an anomaly occurs, FC is called to
alert and notify the service for re-training.

“Device-Edge” Loop. The features will be uploaded and
stored into the ledger after the detection. The detection
flow consists of DSC, VC, and FC. DSC stores the status

Fig. 5   The smart contract-based dynamic management mechanism

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

information of the device, in which you can find the connec-
tion between previous features and current features. Before
submitting a transaction, VC checks whether the transaction
is abnormal or not based on its workflow. FC can alert the
abnormal feature and generate the corresponding secure pol-
icy, then return the alert and policy to the device to respond
to the anomalies.

5.2 � Smart contract implementation

These smart contracts are the core of HADS, so we generate
these contracts under security analysis before their deploy-
ment to avoid vulnerabilities. Furthermore, the structural
design of the smart contract has a large impact on its execu-
tion cost, so we will improve the designed framework to
reduce the execution time and deployment cost through
off-chain pre-compiled processes. We show a flow chart
between five smart contracts in Fig. 6. There are mainly con-
sists of five steps: register, lookup, data transmission, verify,
and reaction. And we also demonstrate the pseudocode of
core functions in Algorithm 2.

Register. When HADS starts, all the devices, services, and
smart contracts need to be registered by calling “serverReg(),
deviceReg(), contractReg()” in Registry Contract and obtain
a blockchain address. RC maintains a trusted addresses list
which records the trusted device addresses that have been
added to the network, and the smart contract addresses that
have been reached a consensus. RC periodically checks and
manage the list, and also remove the untrusted devices, ser-
vices, and contracts. RC provides security read and writes
operations for numerous transactions and smart contract
public data space in blockchain.

Lookup. When the devices upload the features or the ser-
vices set and update the workflows, they will first call for
“contractABI()” in RC to get the “contractAddr, contract-
MethodName” parameters so that they can upload the data
to the correct blockchain address. After they get the correct
address, the devices can call the“setSnap()” in DSC through
“contractABI.setSnap()” to set a snap-shoot. The snap-shoot
helps to quickly find the former log key of the current log
key. The devices can call the “setWorkflow()” in WC through
“contractABI.setWorkflow()” to store the current workflow to
the blockchain ledger. This method is convenient for admin-
istrators to maintain huge amounts of devices and services.

Data Transmission. After the devices and services lookup
the corresponding function addresses, the devices will
upload the feature sequences to the edge blockchain through
“setSnap()” and store them into the ledger in order. In addi-
tion, the services upload the workflows to the edge block-
chain through “setWorkflow(), Graph()” and also store them
into the ledger as an adjacent matrix.

Verify. The core function of HADS is anomaly detection
and implemented in VC by “validate()”. Before a transac-
tion feature is submitted, VC verifies whether it is abnormal
or not. VC utilizes the last feature indexed by the device ID
in the DSC and the workflow graph stored in the WFC to
detect whether the current upload feature is abnormal or not.
If an abnormal occurs, FC is called to alert and generates
defense policies.

Reaction. When we find an anomaly occurs in HADS, we
can call “react()” function to transmit the security policies
to devices. These policies defined by administrators will tell

Fig. 6   The flow chart of smart
contracts

Author's personal copy

	 X. Xie et al.

1 3

the devices how to react to the anomalies. And also, we
can call “feedback()” return the detection result to services.
This feedback contains a label of the current features which
improves the performance of service training and inference.

Algorithm 2 Smart Contract

1: function check(address)
2: mapping(address ⇒ (mapping(string
3: ⇒ Boolean)));
4: if address ∈ address list then
5: result ← state(address, type) ← TRUE;
6: else
7: result ← FALSE;
8: end if
9: return result.

10: end function
11: function checkState(address)
12: if address ∈ RC state then
13: info(address) ← (sysinfo, address)
14: result ← TRUE;
15: else
16: result ← FALSE;
17: end if
18: return result.
19: end function
20: function Graph(workflow)
21: if address ∈ RC state && type ==′ server

then
22: node[] = newArray(count);
23: line[][] = newArray(count)(count);
24: vargraph = WFC graph(address);
25: node[] = graph.nodes;
26: line[][] = graph.line;
27: result ← TRUE;
28: else
29: ′running.log′ ← error;
30: result ← FALSE;
31: end if
32: return err, result, address.
33: end function
34: function validate(server wf, device feature)
35: lastfeatures ← DSC lastfeatures;
36: if lastfeatures == NULL then
37: DSC lastfeatures ← features;
38: result ← TRUE;
39: else
40: if line[lastfeatures][features] == TRUE

then
41: DSC lastfeatures ← features

42: uploadToBC(features).send
43: Transactrion();
44: result ← TRUE;
45: else
46: DSC lastfeatures ← NULL
47: uploadToBC(features).send
48: Transactrion();
49: result ← FALSE;
50: end if

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

51: FC(result, address, features);
52: end if
53: return result, address, features.
54: end function
55: function feedback(feature result)
56: if address ∈ RC state then
57: if V C state == TRUE then
58: alert ← NULL;
59: else
60: alert ← (address, features);
61: policies ← Policy(features);
62: end if
63: end if
64: TransmitToServer(alert, server addr);
65: TransmitToDevice(alert, policies, device addr);
66: return
67: end function

6 � Evaluation

In this section, we demonstrate that HADS can reduce the
ledger size to 7.1% without losing the accuracy of anom-
aly detection. The FLE framework running on low-power
devices outperforms the state-of-the-art encryption solutions
and log parsers on both CPU utilization and task execution
speed. We implement a system prototype to show that HADS
is able to make real-time anomaly detection with an average
latency of 0.47 ms. The evaluation part concerns the follow-
ing questions:

–	 How accurate can the HADS framework achieve? Is the
accuracy affected by reducing data?

–	 How much ledger size does HADS need compared with
the state-of-the-art technologies?

–	 Why the HADS can work on such small ledge size with-
out losing accuracy?

–	 How does the FLE framework perform on low-power
devices?

6.1 � Experimental setup

Configuration. As shown in Fig. 7, the experiments are
running on a network with ten boards of NVIDIA-JET-
SON-TK1, and two servers, one is used for DNN training,
the other is used for the edge server. The specifications of
these devices are listed in Table 1. TK1 devices can simu-
late IoT devices with resource limitations. We run a three
nodes Ethereum network on the edge server to simulate

the blockchain-driven edge network. The training server is
mainly used for DNN training taking the data stored in the
ledger as inputs. Finally, we also design an application to
show the state of devices and Ethereum.

Blockchain Configurations. We use Ethereum to achieve
secure storage and flexible architecture in the edge layer.
With the geth clients, we create an Ethereum account for
each server and device, and configure these nodes to form
a private blockchain network, where the edge server plays
the roles of miners due to their large computing and storage
capability, and the end device and DNN training server serve
as light Ethereum nodes that only send transactions using
web3.js. We utilize some other JavaScript codes to exchange
the information between servers and devices in Fig. 5.

Datasets. We choose the HDFS dataset, HDFS benchmark
dataset Zhu et al. (2019), and oil industry dataset to evalu-
ate our system prototype. In Table 2, we illustrate a detailed
summary of the datasets. HDFS benchmark dataset contains
104,815 raw log messages, with a size of 13.4 MB, which is
often used to evaluate the lightweight metrics, compression
ratio, and latency. The size of HDFS dataset is 1.49 GB and
it contains 11,197,691 raw log messages. There are 575,061
log sequences separated by block_id in total as HDFS raw
log has a unique block_id for each block operation. In the
experiment, we use 102,697 (almost 20% ) normal sequences
for training. The oil industry dataset is collected from the
real industry production environment and contains 132,602
raw log messages with 788 anomaly log messages, which
is valuable for evaluating the real performance of anomaly
detection models.

Measured metrics. Common metrics, such as precision,
recall, and F1-Score are used to show that the HADS frame-
work is able to make real-time anomaly detection without

Table 1   Specifications of devices

Device Edge blockchain Training server

Hardware Jetson-TK1 DELL Tower DELL Tower
CPU ARMv7 Core i7-2600 Xeon E5-2630
Memory 1.9 GB 12 GB 96,566 MB
OS Ubuntu 14.04 Windows 10 Ubuntu 16.04

Table 2   Summary of datasets

System Size #Log messages #Log sequences

Benchmark dataset 13.4 MB 104,815 7,940
HDFS dataset 1.49 GB 11,197,691 575,061
Oil industry dataset 11.9 MB 132,602 –

Author's personal copy

	 X. Xie et al.

1 3

losing detection accuracy. In addition, we present a compres-
sion ratio to study the influence of reducing ledger size under
different transmission rates. We also analyze the CPU usage
and execution time of the proposed FLE framework running
on both resource-constrained and non-resource-constrained
devices comparing with other widely used log parsers and
state-of-the-art encryption solutions.

6.2 � Model performance

In this part, we evaluate the performance of HADS on the
accuracy, latency, and compression ratio. The experimental
results show that our hierarchical model is as accurate as of
the traditional centralized models. In the meanwhile, HADS
has a lower latency and a higher compression ratio.

Accuracy. We design two comparison experiments on train-
ing DNN models for anomaly detection. One is trained with
the raw dataset while the other is trained on the processed
dataset by using FLE. Fig. 8 shows the comparison results
of experiments on the HDFS dataset and the oil industry
dataset. In the bar chart, the performance metrics without
data size reduction is the same as the performance of the
processed data by FLE. The reason is that most of the input
data of DNN are usually very redundant for training or infer-
ence in our cases. As we discussed in Sects. 3 and 4, we use
the hash value of events to replace each log entries in HADS
so that the sequences after being pre-processed still keep the

same order and the same occurrence of events. Furthermore,
a 4-tuple storage structure is utilized to store the ordered
sequences in the edge ledger. When we train the DNN model
at the service layer, DNN will use the windows technologies
to extract the feature matrix by counting the occurrence of
events in the ordered sequences.

Fig. 7   The experiment network
topology

Fig. 8   The accuracy comparison of workflow-based anomaly detec-
tion in different datasets. The FLE operation do not influence the
accuracy

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

Latency. We compare the uploading latency and detection
latency in the experimental network to prove that HADS can
be running in real-time. In Fig. 9, we test the detect latency
of uploading features from devices to the edge blockchain,
send the results or policies from the edge blockchain to
devices, and also record the time cost when we submit 1k,
2k, 3kldots20k transactions. In addition, we test the upload-
ing latency when we submit 1k, 2k, 3k,… , 20k transactions.
The average uploading latency is 0.25 ms, and the average
detection latency is 0.47 ms, which satisfies the demand for
real-time detection. In theory, the latency will be reduced
as offloading the detection computational from the services
layer to the edge layer, but we still need to further evaluate
it at a real network in the future. In this part, we focus on
testing the latency of our algorithm without considering the
latency of Blockchain, such as the latency of block genera-
tion. We also can further optimize the Blockchain ledger
structure, consensus algorithm, smart contract, and instruc-
tion set extension, so that HADS can adapt to real-time
analysis of massive log data.

Compression Ratio. Each node in the blockchain keeps a
complete copy of the data, which leads to the increasing
scale of the ledger, and seriously affects the scalability of the
blockchain. In this paper, we focus on reducing the ledger
size and propose a measurement metric called compression
ratio which is mainly to measure the ratio of the size of
pre-processed data to the size of raw data. The ratio can be
expressed by the following equation:

where Pre() is the data processing operation. Due to the high
cost of data storage on public chain of Ethereum and the
privacy leakage risk caused by storing all the raw data, the

(5)Compression ratio =
#{the size of Pre(data)}

#{the size of data}
,

compression ratio is an important metric to evaluate the data
processing performance and privacy protection.

In this experiment, we take the raw log storage scheme as
our baseline, and compare our FLE method with two typi-
cal encryption solutions: symmetrical encryption (SE) and
asymmetric encryption (AE) which are frequently used for
protecting secure storage of logs Pourmajidi and Miranskyy
(2018). For the symmetrical encryption approach, we choose
advanced encryption standards (AES-256) to encrypt the
plaintext and RSA-1024 or RSA-2048 to encrypt the sym-
metrical key; For the asymmetric encryption approach, we
choose RSA-1024 to encrypt the plaintext, rather than RSA-
2048 because the encrypting speed of RSA-2048 is so slow
that it is rarely used to encrypt the plaintext directly.

Figure 10 shows the comparison results on the HDFS
benchmark dataset in two scenarios: (1) the change of the
data size before being uploaded the data to the blockchain;
(2) the change of the ledger size after storing the data into
the ledger. The bar chart in Fig. 10a shows the change of
the data size and the dash lines reflect the compression ratio
after the different processes. In the bar chart, the results
show that only FLE is able to effectively reduce the data
size, while the data size increases with SE and AE process-
ing. The reason is that the encrypt schemes need to con-
tain all the information for data decryption. The encryption
solutions need to add additional data to fuse, and this will
cause data inflation. But we can also get the raw data after
the decryption. However, after the FLE is being processed,
the additional data will be deleted from the raw data to pre-
vent information leakage. The lines in the figure reflect the
compression ratio of FLE is reaching 7.1% , indicating that
much data is now required to be stored to the ledger, and
this will efficiently reduce the storage cost of gas and ether
in Ethereum.

Figure 10b shows the change of ledger size after being
stored into the blockchain. Different dash lines in the graph
represent the ledger size change and the cost of time when
processing the same raw data using SE, AE, and FLE. With
the FLE process, the ledger size is reduced from 29.95 MB
to 2.10 MB. Moreover, the consensus process speeds up to
2.34x times compared to storing the raw data directly into
the ledger. However, with either the SE or the AE process,
the ledger size is even larger than the ledger of the raw data.

Figure 10c and d show the further experiments when
uploading with different amount of items per transaction.
When we upload 50,000 items to the blockchain per trans-
action, the ledger size changes greatly and the compression
ratio is further improved to 1/55. If in the same ledger size,
the data items contained in the ledger also change obviously
when uploading in different items/Transaction, and the com-
pression ratio can also further improve to 1/12. This also
indicates that the number of network-accessible devices can
be increased. Thus, FLE also improves the performance of

Fig. 9   The network upload latency and detect latency in an experi-
mental environment

Author's personal copy

	 X. Xie et al.

1 3

blockchain and allows more devices access to the networks
by removing irrelevant data and reducing data size as well
as preventing data tampering.

6.3 � Extractor performance

In this section, we study CPU usage and execution perfor-
mance of different extractors. We first compare FLE with
previous log parsers Zhu et al. (2019) to show the efficiency
of the log process, and then compare it with the above
encryption solutions. Our experimental results show that
FLE can run on resource-constrained devices. This evalu-
ation is measured in two aspects: (1) CPU usage indicates
the maximum demand for resources; (2) Execution time
indicates the maximum time that an operation takes up
resources. The shaded area in Fig. 11 intuitively reflects the
need for resources.

Comparing with different log parsers. In this part, we
study the CPU usage and execution time of ten different
log parsers (Zhang et al. 2019; Zhu et al. 2019) and the

experimental results are shown in Fig. 11a. We also make a
comparison between simulated cloud servers and simulated
resource-constrained devices. In Fig. 11a, we observe that
the instantaneous maximum CPU usage reaches 18.3% and
the run-time is 0.497 s when we run FLE to process 6000
items on the cloud server. Logcluster, FLE, AEL, Drain,
and LFA still keep lightweight on NVidia TK1. When we
process 2000 items with FLE on NVidia TK1 to process,
the instantaneous maximum CPU usage reaches 25.5% and
the run-time is 0.475 s. Thus, we can conclude that FLE is
lightweight enough for the resource-constrained end devices
because it replaces the heavy loops and transverse steps with
some lightweight matches and lookup steps. In addition,
the hash computation is called only when a new event is
generated.

Comparing with Different Encryption Technologies. In
this part, we compare the CPU usage and the execution time
of different encryption solutions running on TK1. Figure 11b
shows the comparison results of processing 2000 HDFS
log messages on NVidia TK1. A blank experiment where

(c) (d)

(a) (b)

Fig. 10   The compress ratio comparison: a the data size between raw
data and after the process of SE, AE, and FLE; b the ledger size when
uploading raw data and after the process of SE, AE, and FLE, and

blank data; c the ledger size when uploading in different items/Trans-
action; d the data items in the same ledger size when uploading in
different items/transaction

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

runs an upload program is to simulate the normal activities
on the edge device. The less shade area in the figure indi-
cates that fewer CPU resources are needed in the resource-
constrained end devices. The FLE operation achieves the
best performance with the lest execution time and almost
the same maximum instantaneous CPU utilization as the
other two methods. The task execution speed speeds up to
7.3 x times compared with AE, and 3.6 x times compared
with SE. Thus, the FLE operation effectively reduces energy
consumption when running on low-power devices. Further-
more, HADS achieves the same level of tamper-proof secu-
rity without heavy encryption.

Table 3 shows the comparison of the execution time
of different compression methods on the HDFS dataset.

As the size of the dataset increases, the execution time
greatly increases. In the columns of SE, the execution time
is only 2.33 s when we choose RSA-1024 to encrypt the
symmetrical key, however, this encryption scheme is not
secure enough. When we choose RSA-2048 to encrypt
the symmetrical key under the premium of security, the
execution time of SE Advance reaches 32.4 s which is
almost 1.67 x times to the FLE. Furthermore, the execu-
tion process of FLE speeds up to 2.97 x times compared
with AE. This is because the encrypt operations are always
time-consuming. Comparing with other approaches, the
FLE method is a rapid extractor that only needs to walk
through the log data a few times to obtain the structured
log events. The results in two scenarios indicate that FLE
is not only a very lightweight encryption tool but also can
more efficiently run on low-power devices compared with
the state-of-the-art encryption technologies.

(b)

(a)

Fig. 11   The comparison of CPU usage and execution time: a compared with previous log parsers on serves and NVidia TK1; b compared with
symmetrical encryption (SE), asymmetric encryption (AE), FLE, and blank experiment on TK1 using 2000 HDFS log messages

Table 3   The execution time on TK1 using HDFS benchmark dataset

Operation SE SE advance AE FLE

Execution time 2.33 s 32.40 s 57.68 s 19.44 s

Author's personal copy

	 X. Xie et al.

1 3

7 � Related work

Blockchain-assisted Log Storage. Blockchain is being
used as a decentralization platform to maintain the data
storage consistently in a ledger. And the data contained in
a committed transaction along with the historical transac-
tions are seen as immutable in practice Xu et al. (2018).
Therefore, the blockchain-assisted log storage scheme can
keep the natural character of logs in terms of immutability,
traceability, and tamper-proof. The previous solutions can
be divided into two categories: (1) store the encrypted logs.
In Pourmajidi and Miranskyy (2018), the author proposes a
blockchain-based log system, which collects the logs from
different providers and avoids log tampering by sealing the
logs cryptographically first and then adding them into a hier-
archical ledger. This system provides an immutable platform
for log storage. Similarly, using a immutable log storage as a
service was also proposed in Pourmajidi et al. (2019) Rane
and Dixit (2019). Another approach illustrating the design
of a weblog storage system based on Hyperledger result-
ing in higher throughput and lower latency is mentioned
in Wang et al. (2018). Blockchain is also used to protect
justice Logs in Belchior et al. (2019; 2) store the hash value.
In Huang (2019), the authors utilize the InterPlanetary File
System(IPFS) to store log files and use Ethereum blockchain
to store the hash and the index of the log files. Different
from them, HADS uses a fine-grained hash-map for each
log entries, which makes a trade-off between the log secure
storage and efficient usage.

Log-based anomaly detection. Log-based anomaly detec-
tion aims to mine abnormal behaviors on time through train-
ing classifiers or mining workflow Lou et al. (2010). These
detections help administrators quickly locate and resolve
accident issues. The previous models mainly involve four
steps: log collection, log parsing, feature extraction, and
anomaly detection. The anomaly detection can be further
divided into supervised learning models and unsuper-
vised learning models based on the training dataset with
or without labels He et al. (2016). The supervised models
all require a clear label on normal and abnormal events in
the training dataset. In contrast, the unsupervised models
that work based on the abnormal event which is always as
an outlier point from the normal event, do not need labeled
training data. Recently, a deep neural network model utiliz-
ing Long Short-Term Memory (LSTM) has been proposed
to model a system log as a natural language sequence in Du
et al. (2017). To solve the model aging or concept issue,
the authors proposed confidence-guided multiple algo-
rithms to jointly detect the anomalies in Xie et al. (2019) Xie
et al. (2020). Another important branch is workflow-based

anomaly detection methods, which learn workflows from
the normal execution path, and detect anomalies when it
deviates from the model trained from logs under normal
execution Xiao et al. (2016). These previous approaches only
consider how to improve the accuracy, but not focus on the
log secure storage and actual deployment. To convert the
unstructured raw log into a structured event, log parsing is
an essential task for anomaly detection. Frequent pattern
mining, clustering, and heuristic rules will help to extract
the log event by automatically separating the constant part
and variable part, and further transform each log entry into
a specific event Zhu et al. (2019). Considering the length,
token position of log entries, an efficient log parsing based
on heuristic rules will achieve better performance. And also,
the author gives a confidence-guided evaluation for log pars-
ing inner quality in Xie et al. (2020). Inspired by the pre-
vious research, we design an online and automatic feature
extractor to generate and upload the structured log sequences
instead of raw logs.

8 � Conclusion and future work

In this paper, we propose a hierarchical blockchain-driven
anomaly detection framework that uses an on-chain/off-
chain scheme for immutable and tamper-proof logs stor-
age. We also design a series of smart contracts to man-
age logs storage and build an auto-update mechanism of
smart contracts with the dynamic workflow. To achieve
this goal, we first design a feature extractor that runs on
the resource-constrained end devices to extract features
based on heuristic rules. The content-independent features
can be stored on a trustless blockchain to reduce ledger
size and satisfy the DNN training requirements. And then,
we present a smart contract auto-update method to han-
dle the dynamic changing workflow at the edge layer. The
smart contract can be updated through consensus on the
global parameters for some micro-updates in a workflow.
Our approach provides sound results on multiple datasets
in an experimental network and system prototype. HADS
can reduce ledger size without losing detection accuracy,
and the FLE outperforms state-of-the-art encryption tech-
nologies on resource usage.

Acknowledgements  This work is partially supported by the National
Key Research and Development Program of China (2018YFB2100300),
the National Natural Science Foundation (61872200), the People’s
Republic of China ministry of education science and technology
development center (2019J02019), the CERNET Innovation Project
(NGII20180306, NGII20190402) and the Natural Science Foundation
of Tianjin (19JCZDJC31600, 19JCQNJC00600).

Author's personal copy

Blockchain‑driven anomaly detection framework on edge intelligence﻿	

1 3

Compliance with ethical standards 

 Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

Belchior, R., Correia, M., Vasconcelos, A.: Justicechain: Using block-
chain to protect justice logs. In: OTM Confederated International
Conferences” On the Move to Meaningful Internet Systems”, pp.
318–325. Springer (2019)

Du, M., Li, F.: Atom: efficient tracking, monitoring, and orchestra-
tion of cloud resources. IEEE Trans. Parallel Distrib. Syst. 28(8),
2172–2189 (2017)

Du, M., Li, F., Zheng, G., Srikumar, V.: Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1285–1298. ACM (2017)

Fu, Q., Lou, J.G., Wang, Y., Li, J.: Execution anomaly detection in
distributed systems through unstructured log analysis. In: Data
Mining, 2009. ICDM’09. Ninth IEEE International Conference
on, pp. 149–158. IEEE (2009)

Hamooni, H., Debnath, B., Xu, J., Zhang, H., Jiang, G., Mueen, A.:
Logmine: fast pattern recognition for log analytics. In: Proceed-
ings of the 25th ACM International on Conference on Information
and Knowledge Management, pp. 1573–1582. ACM (2016)

He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing
for large-scale log data analysis. IEEE Trans. Dependable Secure
Comput. 15(6), 931–944 (2018)

He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: An online log parsing
approach with fixed depth tree. In: Web Services (ICWS), 2017
IEEE International Conference on, pp. 33–40. IEEE (2017)

He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analy-
sis for anomaly detection. In: Software Reliability Engineering
(ISSRE), 2016 IEEE 27th International Symposium on, pp. 207–
218. IEEE (2016)

Huang, W.: A blockchain-based framework for secure log storage. In:
2019 IEEE 2nd International Conference on Computer and Com-
munication Engineering Technology (CCET), pp. 96–100. IEEE
(2019)

Jiang, Z.M., Hassan, A.E., Hamann, G., Flora, P.: An automated
approach for abstracting execution logs to execution events. J.
Softw. Mainten. Evolut. Res. Pract. 20(4), 249–267 (2008)

Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J.,
Tang, L.: Neurosurgeon: collaborative intelligence between the
cloud and mobile edge. ACM SIGARCH Comput. Architect.
News 45(1), 615–629 (2017)

Liu, J., Ren, J., Dai, W., Zhang, D., Zhou, P., Zhang, Y., Min, G.,
Najjari, N.: Online multi-workflow scheduling under uncertain
task execution time in iaas clouds. IEEE Transactions on Cloud
Computing (2019)

Lou, J.G., Qiang, F., Yang, S., Jiang, L., Wu, B.: Mining program
workflow from interleaved traces. In: ACM Sigkdd International
Conference on Knowledge Discovery & Data Mining (2010)

Lyu, F., Ren, J., Cheng, N., Yang, P., Li, M., Zhang, Y., Shen, X.: Lead:
large-scale edge cache deployment based on spatio-temporal wifi
traffic statistics. IEEE Trans. Mob. Comput. (2020)

Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: A lightweight
algorithm for message type extraction in system application logs.
IEEE Trans. Knowl. Data Eng. 24(11), 1921–1936 (2012)

Messaoudi, S., Panichella, A., Bianculli, D., Briand, L., Sasnaus-
kas, R.: A search-based approach for accurate identification
of log message formats. In: Proceedings of the 26th IEEE/

ACM International Conference on Program Comprehension
(ICPC18). ACM (2018)

Min, D., Li, F.: Spell: Streaming parsing of system event logs. In:
IEEE International Conference on Data Mining (2017)

Mizutani, M.: Incremental mining of system log format. In: Services
Computing (SCC), 2013 IEEE International Conference on, pp.
595–602. IEEE (2013)

Nagappan, M., Vouk, M.A.: Abstracting log lines to log event types
for mining software system logs. In: Mining Software Reposi-
tories (MSR), 2010 7th IEEE Working Conference on, pp.
114–117. IEEE (2010)

Osia, S.A., Shamsabadi, A.S., Sajadmanesh, S., Taheri, A., Katevas,
K., Rabiee, H.R., Lane, N.D., Haddadi, H.: A hybrid deep learn-
ing architecture for privacy-preserving mobile analytics. IEEE
Internet of Things Journal (2020)

Osia, S.A., Taheri, A., Shamsabadi, A.S., Katevas, K., Haddadi,
H., Rabiee, H.R.: Deep private-feature extraction. IEEE Trans.
Knowl. Data Eng. 32(1), 54–66 (2018)

Pourmajidi, W.: Scalable blockchain-assisted log storage system for
cloud-generated logs (2018)

Pourmajidi, W., Miranskyy, A.: Logchain: Blockchain-assisted log
storage. In: 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 978–982. IEEE (2018)

Pourmajidi, W., Zhang, L., Steinbacher, J., Erwin, T., Miranskyy, A.:
Immutable log storage as a service. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pp. 280–281. IEEE (2019)

Rane, S., Dixit, A.: Blockslaas: Blockchain assisted secure logging-
as-a-service for cloud forensics. In: International Conference on
Security& Privacy, pp. 77–88. Springer (2019)

Ren, J., Zhang, D., He, S., Zhang, Y., Li, T.: A survey on end-edge-
cloud orchestrated network computing paradigms: transparent
computing, mobile edge computing, fog computing, and cloud-
let. ACM Comput. Surv. (CSUR) 52(6), 1–36 (2019)

Shao, W., Wang, Z., Wang, X., Qiu, K., Jia, C., Jiang, C.: Lsc: online
auto-update smart contracts for fortifying blockchain-based log
systems. Inf. Sci. 512, 506–517 (2020)

Shima, K.: Length matters: clustering system log messages using
length of words. arXiv​:1611.03213​ (2016)

Tang, L., Li, T., Perng, C.S.: Logsig: Generating system events from
raw textual logs. In: Proceedings of the 20th ACM international
conference on Information and knowledge management, pp.
785–794. ACM (2011)

Tang, W., Ren, J., Zhang, K., Zhang, D., Zhang, Y., Shen, X.: Effi-
cient and privacy-preserving fog-assisted health data sharing
scheme. ACM TIST 10(6), 1–23 (2019)

Thomas, A., Guo, Y., Kim, Y., Aksanli, B., Kumar, A., Rosing,
T.S.: Hierarchical and distributed machine learning inference
beyond the edge. In: 2019 IEEE 16th International Conference
on Networking, Sensing and Control (ICNSC), pp. 18–23. IEEE
(2019)

Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F.,
Vechev, M.: Securify: Practical security analysis of smart con-
tracts. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pp. 67–82 (2018)

Vaarandi, R.: A data clustering algorithm for mining patterns from
event logs. In: IP Operations & Management, 2003.(IPOM 2003).
3rd IEEE Workshop on, pp. 119–126. IEEE (2003)

Vaarandi, R., Pihelgas, M.: Logcluster-a data clustering and pattern
mining algorithm for event logs. In: Network and Service Man-
agement (CNSM), 2015 11th International Conference on, pp.
1–7. IEEE (2015)

Wang, H., Yang, D., Duan, N., Guo, Y., Zhang, L.: Medusa: Blockchain
powered log storage system. In: 2018 IEEE 9th International Con-
ference on Software Engineering and Service Science (ICSESS),
pp. 518–521. IEEE (2018)

Author's personal copy

http://arxiv.org/abs/1611.03213

	 X. Xie et al.

1 3

Xiao, Y., Joshi, P., Xu, J., Jin, G., Hui, Z., Jiang, G.: Cloudseer: work-
flow monitoring of cloud infrastructures via interleaved logs.
ACM Sigarch Comput. Architect. News 44(2), 489–502 (2016)

Xie, X., Jin, Z., Han, Q., Huang, S., Li, T.: A confidence-guided anom-
aly detection approach jointly using multiple machine learning
algorithms. In: International symposium on cyberspace safety and
security, pp. 93–100. Springer (2019)

Xie, X., Jin, Z., Wang, J., Yang, L., Lu, Y., Li, T.: Confidence guided
anomaly detection model for anti-concept drift in dynamic logs.
Journal of Network and Computer Applications, pp. 102659
(2020)

Xie, X., Wang, Z., Xiao, X., Lu, Y., Huang, S., Li, T.: A confidence-
guided evaluation for log parsers inner quality. Mobile Networks
and Applications, pp. 1–12 (2020)

Xu, S., Qian, Y., Hu, R.Q.: Data-driven network intelligence for anom-
aly detection. IEEE Netw. 33(3), 88–95 (2019)

Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A pattern collection
for blockchain-based applications. In: Proceedings of the 23rd

European Conference on Pattern Languages of Programs, pp.
1–20 (2018)

Yin, H., Wang, Z., Jha, N.K.: A hierarchical inference model for
internet-of-things. IEEE Trans. Multi-Scale Comput. Syst. 4(3),
260–271 (2018)

Zhang, L., Xie, X., Xie, K., Wang, Z., Lu, Y., Zhang, Y.: An efficient
log parsing algorithm based on heuristic rules. In: International
Symposium on Advanced Parallel Processing Technologies, pp.
123–134. Springer (2019)

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intel-
ligence: paving the last mile of artificial intelligence with edge
computing. Proc. IEEE 107(8), 1738–1762 (2019)

Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Tools
and benchmarks for automated log parsing. In: 2019 IEEE/ACM
41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 121–130. IEEE (2019)

Author's personal copy

	Blockchain-driven anomaly detection framework on edge intelligence
	Abstract
	1 Introduction
	2 Technical background
	2.1 Anomaly detection based on log analysis
	2.2 Blockchain and smart contract
	2.3 Edge intelligence

	3 The system architecture of HADS
	3.1 Hierarchical architecture
	3.2 Feature extractor
	3.3 Feature matrix generation and detection model training
	3.4 Auto-update mechanism of smart contract

	4 On-chainoff-chain storage scheme
	4.1 Storage scheme implementation
	4.2 Tampered detection
	4.3 Efficiency and security analysis

	5 Smart contract-based dynamic management mechanism
	5.1 Mechanism overview
	5.2 Smart contract implementation

	6 Evaluation
	6.1 Experimental setup
	6.2 Model performance
	6.3 Extractor performance

	7 Related work
	8 Conclusion and future work
	Acknowledgements
	References

