
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

PaVM: A Parallel Virtual Machine for Smart
Contract Execution and Validation

Yaozheng Fang, Zhiyuan Zhou, Surong Dai, Jinni Yang, Hui Zhang, Senior Member, IEEE Ye Lu*

Abstract—The performance bottleneck of blockchain has
shifted from consensus to serial smart contract execution in trans-
action validation. Previous works predominantly focus on inter-
contract parallel execution, but they fail to address the inherent
limitations of each smart contract execution performance. In this
paper, we propose PaVM, the first smart contract virtual machine
that supports both inter-contract and intra-contract parallel
execution to accelerate the validation process. PaVM consists
of (1) key instructions for precisely recording entire runtime
information at the instruction level, (2) a runtime system with a
re-designed machine state and thread management to facilitate
parallel execution, and (3) a read/write-operation-based receipt
generation method to ensure both the correctness of operations
and the consistency of blockchain data. We evaluate PaVM on
the Ethereum testnet, demonstrating that it can outperform the
mainstream blockchain client Geth. Our evaluation results reveal
that PaVM speeds up overall validation performance by 33.4×,
and enhances validation throughput by up to 46×.

Index Terms—Smart contract, Virtual machine, Architectural
design, Blockchain.

I. INTRODUCTION

Mainstream blockchain techniques usually necessitate fre-
quent transaction validation to guarantee data consistency
among massive blockchain nodes [1], [2]. A transaction in-
cludes a function invocation of a smart contract. The val-
idation of transactions refers to the execution of a batch
of smart contracts [3]–[5]. Previous studies have illustrated
tha the performance bottleneck of blockchain has shifted
from consensus to serial contract execution during transaction
validation [6], [7]. For example, modern Practical Byzantine
Fault Tolerance (PBFT) consensus achieves more than 3,000
transactions per second (TPS), but the serial contract execution
only nearly 100 TPS [6] and 20 TPS [8] on average in private

This work is partially supported by the National Natural Science Foun-
dation (No. 62372253, No. 62002175), the Natural Science Foundation
of Tianjin Fund (No. 23JCYBJC00010), the CCF-Baidu Open Fund (No.
CCF-Baidu202310), the CCF-Huawei Populus Grove Fund (No. CCF-
HuaweiTC2022005), and the Open Project Fund of State Key Laboratory of
Computer Architecture, Institute of Computing Technology, Chinese Academy
of Sciences (No. CARCHB202016), and the Open Project Foundation of
Information Security Evaluation Center of Civil Aviation, Civil Aviation
University of China (No. ISECCA-202102).

Y. Fang, S. Dai, J. Yang, and Y.Lu are with the College of Computer
Science, Nankai University, China, and with the Tianjin Key Laboratory of
Network and Data Science Technology.

Y. Lu is also with the College of Cyber Science, Nankai University, China,
and the State Key Lab of Processors, ICT, CAS, and the Key Laboratory of
Data and Intelligent System Security, Ministry of Education, China (DISSec),
and the Information Security Evaluation Center of Civil Aviation, Civil
Aviation University of China, Tianjin, China.

Z. Zhou and H. Zhang are with the Blockchain Platform Division, Ant
Group.

Corresponding author: Ye Lu, Email: luye@nankai.edu.cn

and public Ethereum, respectively. The reason is that the
serial execution pattern has limited the transaction validation
performance. Thus the transaction validation indeed suffers
from high latency.

Several approaches have been proposed to speed up trans-
action validation by enabling parallel execution among con-
tracts [6], [7], [9]–[11], as illustrated in Fig. 1. Smart contracts
in transactions can be executed in parallel with each other.
However, these approaches exhibit limitations in their ability
to achieve thorough acceleration, because they only operate
in parallel at the transaction level (we call it as inter-contract)
rather than the function level (we call it as intra-contract). The
function execution within a smart contract in the execution
environment, such as Ethereum Virtual Machine, is still serial.

In fact, the validation performance can be further improved
by enabling intra-contract execution in parallel within a single
contract. Furthermore, previous attempts to optimize inter-
contract execution [7] have frequently resulted in inconsistent
blockchain state, and the receipt generation method based on
uncertain transaction validation orders can also lead to state
synchronization failures. Therefore, based on the above we can
draw three observations as follows:

Firstly, although modern general CPU architecture pro-
vides powerful parallel processing capability [12], [13], which
presents an opportunity for accelerating contract execution,
the design of a typical smart contract virtual machine is still
based on a single thread [14], [15]. Additionally, incorporating
multiple threads mechanism directly into the VM may disrupt
the correct read/write order. For instance, the random data
read/write operations on storage spaces lead to inconsistent
smart contract outputs and blockchain states across different
blockchain nodes [16].

Secondly, traditional data conflict detection mechanisms are
imprecise because they rely on incomplete runtime informa-
tion. The data outside the contract storage, such as data R/W
logs, cannot be detected; only dirty reads and dirty writes
inside the contract storage can be monitored [17]. Since the
data outside the contract storage is temporarily stored during
contract runtime [18], [19], the entire runtime information
cannot be transferred into the validation. This renders the
detection mechanism unable to take advantage of the runtime
context to address the conflicts precisely. In addition, detection
methods based on static semantic analysis assume that all data
operations in branches such as if statements will occur [20].
Such a pessimistic assumption expands the scope of conflicts
and degrades overall performance.

Thirdly, parallel transaction validation is incompatible with
the transaction receipt generation of public blockchains, which



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Fig. 1: The parallel transaction validation paradigm.

can result in data synchronization failures between blockchain
nodes. Specifically, transaction validation produces transaction
receipt in terms of intermediate blockchain state [21], [22].
In parallel validation, because the transaction validation or-
der is random, and the intermediate state remains uncertain,
thus resulting in transaction receipts being different between
blockchain nodes. These different receipts can cause incon-
sistencies in block headers among nodes, and lead to both
validation and data synchronization failures [23].

To address the aforementioned issues, we propose PaVM,
the first smart contract virtual machine that supports both
inter-contract and intra-contract parallel execution to accel-
erate transaction validation. The key idea of PaVM which
supports parallel execution is to describe runtime information
at a fine-grained level and enhance the runtime system by
introducing thread state and management to improve contract
execution efficiency. Experimental results highlight that PaVM
can improve the overall transaction validation performance by
about 33.4×, compared with Geth, the mainstream client of
Ethereum. The implementation of PaVM is built upon the
optimized SmartVM [4]. The contributions of this work can
be summarized as follows:

• We propose three kinds of instructions that record the
entire runtime read/write information at the instruction
level precisely. The key interfaces and instructions are
also proposed for developers. The throughput of transac-
tion validation can be improved by 25× on average and
46× on maximum. The additional recording time burden
is only 0.3%, which can be ignored.

• We enhance and extend a runtime system for PaVM,
which can realize machine state and thread management
to perform parallel execution. The speedup of execution
reaches 20× on average.

• We present a read/write-operation-based receipt gener-
ation method in PaVM that can generate determined
receipts in terms of intermediate operations to handle
random validation. The method can also keep state con-
sistency and is adaptive for parallel validation.

• We implement PaVM as a building block embedded
into the Ethereum testnet Geth client, with programming
interfaces, instructions, and the runtime system. The com-
parison experiments are performed by three benchmarks

Fig. 2: The blockchain hierarchical architecture.

with eight kinds of contracts. Compared with the original
Geth, Geth integrated with PaVM improves the transac-
tion validation performance by 33.4× and achieves 99.8%
hardware resources CPU utilization which is improved by
nearly 38×.

II. BACKGROUND AND MOTIVATION

A. Smart contract

The blockchain is a distributed ledger that continuously
grows with a series of interconnected blocks. The blocks are
securely linked together via cryptographic hashes [24]. As
shown in Fig. 2, the blockchain runs on the operating system
and hardware. The blockchain is implemented by common
high-level programming languages (e.g., Golang). The nodes
in blockchain are interconnected via a peer-to-peer network
with various communication protocols. The consensus mech-
anism defines the rule of block generation, realizes block syn-
chronization, and maintains data consistency across multiple
blockchain nodes. As a crucial component of the blockchain,
the smart contract enables trusted on-chain computations. To
make the computations trusted, the computation results of
smart contracts are validated by all blockchain nodes. The
smart contracts can support many distributed applications such
as smart traffics and auction systems. Our PaVM primarily
focuses on optimizing the smart contract system to improve
the validation and execution performance.

contract Demo {
/* var. def */ 
uint x = …;
string s = …;
mapping m = …;
… …
/* func. def */
func foo(…){…};
func bar(…){…};
… …

}

COINBASE
MLOAD
JUMP
JUMPDEST
EQ
… …
MUL
SSTORE
NUMBER
… …
ISZERO

Smart contract
source code

An instruction

0x41
0x51
0x56
0x5B
0x14
… …
0x02
0x55
0x43
… …
0x15

BytecodeAssembly Smart contract
virtual machine

Program counter (PC)

Stack validate

VM Memory validate

Instruction dispatch

Instruction execute

PC++

……
Serial 
execution

C
om

pi
le

Fig. 3: The contract execution.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

contract Example {1
2

function main(string args[…]) {3
/* do something */4
……5
int k = foo(…);6
/* do something else */7
……8
}9

10
/* foo is a sub function */11
function foo(string args[…]) {12

13
int k= 0;14
……15
return k;16
}17

18

/* other functions def */19

……20
}21

Thread
main()

Thread
foo()

contract Demo {1
2

function main(string args[…]) {3
/* do something */4
……5
int k = foo(…);6
/* do something else */7
……8
}9

10
/* foo is a sub function */11
function foo(string args[…]) {12

13
int k= 0;14
……15
return k;16
}17

18

/* other functions def */19

……20
}21

Function invocation
Threads
foo()
……

Contract 1
foo()

invocation

Contract 2
bar()

invocation

Contract 3
zoo()

invocation

Threads
bar()
……

Threads
zoo()
……

Contract N
add()

invocation

Threads
add()
……

…
…

…
…

Block

Transaction 1

Transaction 2

Transaction 3

…

Transaction N

(1) Contract execution (2) Intra-contract parallel (3) Inter-contract parallel (4) Transaction validation

Check execution
results

Check execution
results

Check execution
results

Check execution
results

Smart contract 
execution

Smart contract 
execution

Smart contract 
execution

Smart contract 
execution

Fig. 4: The preliminary concepts of PaVM.

Smart contract is a piece of executable code stored in the
blockchain [25], [26]. The smart contract realizes complex
computations by defining state variables and functions [27].
As shown in Fig. 3, the contracts programmed in high-level
contract-oriented languages (e.g., Solidity) are compiled into
bytecode [28] before being executed in a smart contract virtual
machine (SCVM) such as Ethereum Virtual Machine (EVM).
The bytecode is composed of several SCVM instructions such
as PUSH and ADD. Traditional SCVMs perform the contracts
by executing the bytecode instructions in serial based on
a program counter [4]. The instructions are defined in a
smart contract instruction set and implemented by native
programming languages. The function in a smart contract can
be invoked through a blockchain transaction, which typically
includes the data of the function identifier and corresponding
arguments. Hundreds of transactions can be encapsulated as
a block. Once the nodes receive a block, they are obligated
to validate the transactions contained within the block. The
validation involves executing the functions which are related
to call data in smart contracts.

Before introducing the motivation of PaVM, there are
several key concepts should be explained as follows:

• Contract execution. A smart contract consists of several
variables and functions, which can be invoked by users.
The logic in the invoked function is executed in smart
contract execution environments such as EVM. For ex-
ample, in Fig. 4(1), the user invokes the main function,
which is executed in EVM. The function execution pro-
cess can also be called as contract execution.

• Intra-contract parallelism. As shown in Fig. 4(2), the
main function invokes the foo function. These two
functions can ideally be executed in parallel when they
have no data or control dependencies. The two functions
can be run in separate threads. We name this case as
intra-contract parallelism.

• Inter-contract parallelism. As shown in Fig. 4(3), when
multiple smart contracts are invoked and there are no
dependencies between each of two invoked contracts,
these contracts can be executed in separate threads. We
name this case as inter-contract parallelism.

• Transaction validation. In the blockchain system, a smart
contract invocation is encapsulated into a transaction, and
transactions from dozens to hundreds can form a block,
as shown in Fig. 4(4). The smart contract invocations in
the transactions are re-executed by all blockchain nodes.
This process is called as transaction validation.

B. Virtual machine for smart contract

Smart contract virtual machine (SCVM) serves as a virtual
execution environment with a rudimentary runtime system
designed for the execution of smart contract bytecode. SCVMs
typically include two temporary storage spaces designed for
storing runtime information: Stack and VM Memory [29].
During contract execution (see Fig. 3), the SCVM fetches
instructions from bytecode by referencing the program counter.
The SCVM subsequently validates the status of storage spaces
before dispatching and executing the specified instruction.

Compared to traditional multiple-thread virtual machines,
such as Java Virtual Machine (JVM) [30], SCVMs are usually
more lightweight, compact, and simpler. SCVMs execute the
instructions in serial without any support for multiple threads
management [4]. Utilizing the multiple thread mechanism
directly to improve the execution efficiency of SCVMs can
result in random and disordered R/W orders, ultimately leading
to inconsistent execution output. The reason is that all the
threads can read/write the storage spaces such as Stack and VM
Memory in any order. This motivates us to enhance the runtime
system to support the parallel execution of smart contracts.

Moreover, the multiple thread mechanisms in a traditional
VM for parallel execution are too heavy for a smart con-
tract system [31]. Those mechanisms impose overhead on
all blockchain nodes during validation and execution. All
blockchain nodes should launch the SCVM to re-execute all
the contracts [32]. It is worth to note that the new research
SmartVM [4] on parallel contract execution at the instruction
level aims at facilitating high-performance on-chain deep
neural network (DNN) computations. This approach implies
the potential of intra-contract parallel mechanism. Although
SmartVM incorporates parallel execution for DNN-oriented
instructions, its parallelism is limited to only allowing matrix



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

...

Receipts trie

Account state
Storage Root

Block Header

State Root

Receipts Root

Transactions Root

Block Body

Other attributes

Transaction #1
ContractA Foo(…)

Transaction #2
ContractB Bar(…)

Transaction #3
ContractC Main(…)

Transaction #N

R1 R2 R3 Rn

World state trie

A

Storage trie

x y

Transactions trie

T1 T2 Tn

Contract code 
& Code hash

……

contract C {

int x = …;

int y = …;

func A(){x = …; ret x;}

func B(){y = …; ret y;}

func Main(…){

int a = A();

int b = B();

};

}

Transaction receipt #3

receipt

transaction

account

…… ❶ Before execution: 
contract
invoking

❷ During 
execution: 

update 
Storage

❸ After execution: 
receipt generation

❹ Block header 
generation

... ...

...

... ...

... ...

Fig. 5: The overview of smart contract execution.

operations, while other operations still need to be performed in
serial. In addition, SmartVM does not manage data read/write
operations performed by numerous threads, possibly leading
to inconsistent computational results. These observations moti-
vate us to propose the thread management and operation order
control methods to achieve data consistency at the function
level in PaVM design.

Contract execution changes the blockchain state, which
refers to the data stored in the blockchain such as account
balance, smart contract code, etc [33]. In the traditional
SCVM, validating a transaction involves invoking and exe-
cuting corresponding contracts in serial.

The execution will update the storage trie, which stores the
contracts’ variables. Each variable resides in a separate leaf
node of the storage trie. As shown in Fig. 5, we take Ethereum
as an example. The blockchain state is maintained by three
kinds of tries [4]. Transaction details, blockchain accounts,
and transaction receipts are stored in the leaf nodes of the
transaction trie, world state trie, and receipt trie, respectively.
During transaction #3 validation, 1 the Main function of
Contract C is invoked in the transaction fields. 2 The
subfunctions within Main, A and B, are executed in serial. In
fact, they can be executed in parallel, because there are no R/W
operation conflicts between variable x and variable y. Function
A and function B write data to distinct leaf nodes. However, the
original serial execution pattern of the two functions within the
contract constrains the overall performance. 3 After the con-
tract execution, the outcomes and operation logs are utilized
to generate the transaction receipt. 4 The headers of three
tries are recorded in the block header. Any inconsistency in
the data of a trie can cause inconsistent block headers, leading
to failures to synchronize blocks and transactions. The serial
pattern limitations motivate us to explore the intra-contract
parallelism method which conforms to the consistency.

Miner

Receipt 1

State
0

State
1Tx 1 State 

2

For receipt 
generation

Validator

Receipts trie root
(Hash(R1,…Rn))

Final
State

Pre-execute in serial

Re-execute in serial

SCVM

Receipt 2

Tx 2

SCVM

State
0

State
1Tx 1 State 

2
Final
StateTx 2

Receipt 1 Receipt 2

Receipts trie toot
(Hash(R1,…Rn))

SCVM SCVM

blockHash=Hash(rpRoot, 
stateRoot, …)

Block
hash

For receipt 
generation

Block
hash

stateRoot=
Hash(final_state)

Validate

Tx 1: Transaction 1 SCVM: Smart contract 
virtual machine

Hash(…):
Hash function

Fig. 6: The miner-validator style for transaction validation.

C. Transaction Validation

In fact, based on our analysis, there are minimal instances of
data races and dependencies existent in real transactions and
smart contracts. We analyzed 10,000 blocks in the Ethereum,
each block includes 200 to 300 transactions. The results reveal
that more than 90% transactions and smart contracts can be
validated and executed in parallel. The transaction validation
obeys a miner-validator style [6] as shown in Fig. 6. The
miner pre-executes the smart contracts serially to generate a
new block with the block hash, and the validator re-executes
the contract in serial to generate a block hash, which will be
compared with the one in the miner. Traditional validation
commonly regards a SCVM as a black box, thus the valuable
runtime information cannot be fully utilized for validation and
receipt generation.

As shown in Fig. 6, the smart contract in the transaction
is executed by the SCVM, with outputs consisting of both
the receipt and the updated state. During the execution, the
runtime information is temporarily stored in the SCVM and
discarded afterward. The runtime data occupies only 0.1%
working memory [4]. However, the entire runtime information
is transferred to the validation process. The data conflicts can
only be detected by observing the dirty read and write opera-
tions in the state. It should be noted that the conflicts do not
manifest in the state will remain undetectable. The imprecise
conflict detection can cause different blockchain states. This
motivates us to collect the entire runtime information which
records atomic operations with only a little working memory
burden.

We should also consider the receipt generation depicted in
Fig. 6. With each contract execution, an intermediate state is
generated, which subsequently serves as the basis for receipt
creation [34]. For instance, the receipt 1 for transaction 1 is
generated according to State 1. During the parallel validation,
the receipt in the miner and the receipt in the validator
are inconsistent, because the random orders of transaction
execution cause their intermediate state uncertain. The two



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

inconsistent receipts lead to two different block hashes, thus
failing to synchronize the transaction validation and state
among the blockchain nodes. This encourages us to re-design
a receipt generation method in PaVM to keep the consistency
of receipts.

D. Summary of Limitations & Challenges

We summarize three limitations and challenges faced in
contract execution, runtime information, and receipt generation
as follows:

The prevailing smart contract virtual machines are
primarily designed following a single-thread pattern, which
fails to support parallel execution and sufficient utilization
of hardware resources. The bytecode instruction executing
in serial in conventional SCVM leads to poor performance.
As depicted in Fig. 7, the smart contract fails to make full
use of multi-core hardware process capabilities. Only one out
of the 40 available cores is actively engaged in execution,
while the remaining 39 cores have a utilization rate of only
0.5%. The intra-contract parallel method is hard to design
due to the requirement for a determinate data read/write order
among multiple threads. However, data read/write operations
are inherently random when using multi-threading technology
in smart contracts. The non-deterministic order of data R/W
operations in intra-contract parallelism eventually leads to an
inconsistent blockchain state among blockchain nodes.

Coarse-grained and imprecise transaction grouping
leads to frequent rollbacks and block synchronization fail-
ures in parallel transaction validation. Imprecise transaction
grouping results from imprecise detection of data conflicts.
Precise conflict detection requires the recording of the com-
plete runtime information such as data read/write operations.
The complete information should be recorded at the both
database level and the instruction level. Existing runtime
information recording can only record the operations from the
coarse-grained database level by the corresponding interfaces.
SCVM lacks the instruction support to record the instruction
operations at the instruction level. For example, in EVM1, the
database-level runtime information such as storageChange

can be recorded by the data dirty read/write interfaces, while
the instruction-level information such as addLogChange can-
not be recorded during execution. The coarse-grained and
imprecise transaction grouping limits parallel transaction val-
idation.

Uncertain intermediate state during receipt generation
frequently leads to block inconsistencies and transaction
synchronization failures. The intermediate state refers to

1github.com/ethereum/go-ethereum/blob/master/core/state/journal.go

Fig. 7: Utilization of each CPU core during validation.

the blockchain state after smart contract execution. In serial
validation, the generation of receipts from these intermediate
states aims to ensure the correctness of the operations in
SCVM during contract execution [35]. However, in parallel
validation, random validation order leads to non-deterministic
intermediate state. The receipt generation based on the non-
deterministic intermediate state generates inconsistent receipts,
thereby causing inconsistency in the blockchain state among
blockchain nodes [23]. Consequently, it is difficult to design
an SCVM that can simultaneously guarantee receipt consis-
tency and the accuracy of operations in parallel transaction
validation.

III. PAVM DESIGN

PaVM aims to provide a parallel virtual machine with pro-
gramming interfaces, a bytecode instruction set, and a runtime
system to support both inter-contract and intra-contract parallel
execution. The entire runtime information generated by atomic
operations can be recorded by the proposed instructions with
minimal memory burden. PaVM re-designs the machine state
to handle massive amounts of thread data and implement
data order control among multiple threads. Moreover, PaVM
provides a transaction receipt generation method based on
R/W operations, specifically tailored for parallel transaction
validation.

A. Overview

Fig. 8 shows the overview of PaVM. The core design of
PaVM can be decomposed into three parts: programming in-
terfaces, bytecode instruction set, and runtime system. (1) The
programming interfaces are divided into thread control, data
order control, and runtime recording control. These interfaces
are supplied to enable developers to achieve data operation
order consistency and accurate runtime information record-
ing, thereby facilitating parallel validation. (2) The bytecode
instruction set is designed to facilitate the compilation of pro-
gramming interfaces. The instruction set contains thread con-
trol, data control, and runtime recording instructions. PaVM
facilitates parallel transaction validation and receipt generation
by recording the entire runtime information with the help of
runtime recording instructions. All the information is gen-
erated by contract instructions such as SLOAD, the proposed
recording instructions can record the instruction action and its
context. (3) The runtime system is the execution environment
of smart contracts. It includes machine state, thread state,
and thread management. The machine state is re-designed
to support the storage of subthread data. The Stack stores
instruction operands. The persistent data is stored in Persistent
Storage. The complex temporary data such as the array is
stored in Temporary Data. The call data of subfunctions
are stored in Thread Data. During contract execution, PaVM
assigns the subfunctions to different threads and executes them
in parallel. Each thread reads/writes its own Thread Data area
and updates its state in Thread State Table. The return values
of threads are stored in Temporary Data according to the
metadata in Thread Data. The runtime information of both the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

PUSH 0xa
SUBSOL
PUSH 0xb
SUBSOL

/* start subthreads */
subsol [0] Foo(…);
subsol [1] Bar(…);

Bytecode
instruction set

Thread 
control

instructions

Programming
interfaces

Thread
control

Data order
control

Runtime
recording

control

/* R/W order def */
afterr[0][x] Foo(…);
afterw[1][y] Bar(…);

/* start R/W set rec */
func rwr Main(…) {…}
/* start receipt rec */
func rphash Main(…) {…}

Smart contract in
high-level language

Data order 
control

instructions

Runtime 
recording 

instructions

Bytecode

PUSH 0x0
PUSH 0x1
SSTORE
AFTERR

PUSH 0xc
RWR
PUSH 0xc
RPHASH

Runtime system

Thread Data

Stack

Thread 
State 
Table

Temporary
Data

Persistent
Storage

Operands

Persistent data Complex data

Update 
state

Return values

Call
data

Record 
Data

Runtime
info

Runtime info

Parallel 
transaction 
validation

Runtime 
data

Tx
grouping

Thread 1
Bar(…)

Thread 2
Foo(…)

Tx Tx Tx…

Tx
Tx

Tx
Tx

…

Thread Thread

Receipt
#1

validate 
on several 

threads

PaVM

Thread data r/w

Thread N
…(…)

…
Receipt

#N

Operation 
hash

…

Fig. 8: The overview of PaVM.

Miner Validator

Pick transactions from 
transaction pool

Execute the
transactions in serial

Compute block header 
by receipt & R/W set

Fill block body with 
transactions

Construct block with 
head and body

Broadcast the new block

Transactions

Receipts

Block header

Block body

Block

R/W set

Receive block from 
miner

Extract transactions 
and R/W set from block

Execute the 
transactions in parallel

Compute & compare 
block header

Write block to local 
database

Block

Transactions

Receipt

Block 
header

R/W set

Fig. 9: The block cycle in the blockchain with PaVM.

main thread and sub-threads is stored in Record Data. The data
in Record Data is read in the transaction validation process.

PaVM supports parallel validation by recording runtime
information precisely and entirely. The transactions are or-
ganized into groups based on the runtime information, thus
avoiding data conflicts and maintaining blockchain state con-
sistency. While the transactions are validated on different
threads, the hash values of data R/W operations are computed
to generate the receipt. The operation-based receipt generation
ensures the correctness of operations and the consistency of
the final state.

We summarize the block cycle in the blockchain with PaVM
in Fig. 9. The miner generates and broadcasts a new block, and
the validator(s) validate the newly generated block. First, the
miner picks transactions from the transaction pool according
to specific rules such as transaction fee priority. Then the
miner executes the picked transactions in serial and generates
the receipts. In PaVM, to accelerate the block cycle and
validation, an R/W set will be generated during the miner
executing the transactions in serial. The R/W set records the
data read and write sequence. Therefore, the miner can divide
the transactions into different parallel groups according to the
R/W set. The R/W set and group information can be stored in
the block header with negligible overhead.

The block header hash is calculated by receipts and the
generated R/W set, and the block body is filled with the picked
transactions. Subsequently, the miner constructs a new block
by block header and body, then broadcasts the new block to
other nodes (validators). The validator receives the new block
from the miner and extracts the transactions from the received
block. With the help of the R/W set and group information,
the validators can execute the transactions and smart contracts
in parallel. The parallel contract execution can improve the
validation performance. Lastly, the block is stored in the local
database of the validator.

B. Key interfaces

PaVM provides programming interfaces for developers to
realize intra-contract parallelism. The key interfaces in PaVM
are listed in Table. I. There are three kinds of interfaces: thread
control, data control, and runtime recording control. The thread
control interfaces support thread management. For instance, a
thread can be started to run a subfunction by subsol, and
be suspended by sleep. The data control interfaces are used
for defining data operation order to ensure blockchain state
consistency among blockchain nodes. The runtime recording
control interfaces declare runtime information recording at
the instruction level. The recorded data can support parallel
transaction validation. The aforementioned interfaces are en-
capsulated in keywords in practice.

The thread control interfaces are provided for developers to
start and terminate threads. The two functions, Foo and Bar,
can run in parallel by the statements subsol Foo(...) and

Key programming interfaces
Type Keyword Syntax
Thread control subsol subsol [tid] [func]
Thread control sleep sleep [tid] [time]
Thread control revertt revertt [tid]
Data control afterw afterw [tid] [var] [func]
Data control afterr afterr [tid] [var] [func]
Data control aftera aftera [tid] [func]
Runtime record rr func(...) [rwr]
Runtime record rphash func(...) [rphash]

TABLE I: Key programming interfaces in PaVM.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

subsol Bar(...), respectively. PaVM allows handling the
threads in a fine-grained way: developers can define the thread
identifier to control threads. For instance, in the statement
subsol [9] Foo(...), the thread with identifier nine runs
the function Foo.

In order to run subfunctions in parallel without thread R/W
conflicts, we provide programming interfaces to explicitly
specify the R/W order. This approach ensures the consistency
of computed results. The data R/W order is ruled by afterw,
afterr, and aftera interfaces in terms of the thread identi-
fier, operation type, and variable name. For instance, the state-
ment afterw[6][x] Foo(...) means that all operations on
variable x in Foo should occur after thread #6 has written the
variable x. Similarly, the statement aftera[9] foo(...),
means that all the operations on any variable should occur
after thread #9 has read/written all variables. PaVM will
not lead to incorrect execution results when the developer
does not write any data control, because PaVM has a default
data R/W sequence. PaVM advises against introducing data
dependencies between functions running on different threads,
as it may lead to data R/W blocking.

The runtime recording interfaces enable runtime data
recording at the instruction level. For example, Foo(...) rr

allows runtime records within the Foo function. The recorded
data includes data R/W order, logging, and others. The key-
word rphash is used for computing the data operation hashes,
which support R/W operation-based receipt generation.

PaVM provides concise interfaces for developers to min-
imize development burden. Users can enable PaVM features
with minimal modifications, as shown in Fig. 10. Furthermore,
PaVM seamlessly integrates with EVM, as traditional smart
contracts can also be executed in PaVM.

As shown in Fig. 10, we use the WordCount contract as
an example to demonstrate the utilization of key interfaces.
The WordCount contract returns the number of each word
(e.g., < word, frequent >) in the input text. The contract
code is given in Fig. 10(a). There are two functions in the
contract: main and count. The main function (line 13) splits
the input text into two segments and dispatches them to the
count function (line 3) to calculate the number of each word.

In Fig. 10(b), we use rr and rphash keywords to enable
runtime information recording and hash computation (line
13), respectively. With the rr keyword, after the contract is
executed, PaVM generates a data read/write set to support
parallel transaction validation. With the rphash keyword,
the hash value of each data r/w operation can be computed
when it occurs. Since the input text can be split into different
segments for parallel processing, the subsol keyword can be
used for starting two threads (lines 16 and 17) to perform the
count function simultaneously thereby improving the process
performance. The numbers in brackets, such as [1] and [2],
are the thread IDs within PaVM. Other keywords, such as
sleep and revertt, can easily control the corresponding
thread through specific thread IDs (lines 18 and 19).

C. Key instructions
PaVM provides a bytecode instruction set to support con-

tract compilation and realize precise runtime information

Key instructions
Type Mnemonic Opcode Context
Thread control SUBSOL 0xA1 PUSH, PUSH
Thread control SLEEP 0xA2 PUSH, PUSH
Thread control REVERTT 0xA3 PUSH
Data control AFTERW 0xA4 PUSH, MLOAD
Data control AFTERR 0xA5 PUSH, MLOAD
Data control AFTERA 0xA6 PUSH, MLOAD
Runtime record RR 0xA7 PUSH, MLOAD
Runtime record RPHASH 0xA8 PUSH, MLOAD
Runtime record RDR 0xA9 PUSH
Runtime record WTR 0xAA PUSH

TABLE II: Key instructions in PaVM.

recording. The instruction set contains thread control instruc-
tions, data control instructions, runtime recording instructions,
and normal instructions. Table II shows the key instructions.
The first three kinds of instructions are designed to support
the programming interfaces during compilation. The normal
instructions include some basic instructions for computations
such as ADD. The Opcode is the specific byte of the instruction
in bytecode. The context refers to the arguments required by
the instruction.

The thread control instructions can start, suspend, and
terminate a specific thread. Once a thread control instruction
is executed, the corresponding thread will receive a message
to perform the corresponding action.

The data control instructions enforce the user-defined data
R/W order. Once the current operation on a variable does
not conform to the semantics of data control interfaces, the
operation will be blocked until other threads complete the
operation on this variable.

In the existing SCVM, all runtime information is generated
from atomic operations, including database R/W and log ap-
pending. These atomic operations are performed by instruction
execution, so we record instruction actions in the runtime
system of PaVM to record the entire information to support
transaction grouping. For example, the data read and write
can be recorded by RDR and WTR instructions, respectively.
The RDR instruction records the data location when reading
data, and the WTR records the data location and the new value
when writing data.

Runtime data recording captures the entire sequence when
the miner pre-executes transactions to ensure result consis-
tency. The recorded data includes the count of variable R/W
operations and identifies which transaction wrote/read the
variable first. When the validators execute the transactions
in parallel, the sequence will be checked when the data is
written/read. When a read/write operation happens, the thread
will check whether the previous operations occur or not. As
a result, the transactions can be executed in parallel even
though the transactions invoke the same contract function.
With the read/write sequence checking, PaVM will not restrict
the parallelism between transactions when two transactions
invoke the same smart contract.

The runtime recording instructions generate a data R/W set
after contract execution. The data R/W set contains contract
address, database identifier, and other relevant information. Af-
ter contract execution, the R/W set is stored in the transaction



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

contract WordCount {1
2

function count(string textSegment) {3
mapping string[int] ret;4
for(int i = 0; i < len(textSegment); i++) {5
string word = textSegment[i];6
ret[word] == NULL ? ret[word] = 0 : ret[word]++;7

}8
return ret;9
}10

11
/* Enable runtime record and hash computing in main function */12
function rr rphash main(string text) {13
int length = len(text);14

15
mapping tempRet1 = subsol [1] count(text[0 : length/2]);16
mapping tempRet2 = subsol [2] count(text[length/2 : length]);17
sleep [1] 1000; // No.1 thread sleeps for 1000ms18

revertt [2]; // Revert the operations made by No.2 thread19

20
/* Join the two temporary values by embedded function */21
return join(tempRet1, tempRet2);22
}23
}24

contract WordCount {1
2

function count(string textSegment) {3
mapping string[int] ret;4
for(int i = 0; i < len(textSegment); i++) {5
string word = textSegment[i];6
ret[word] == NULL ? ret[word] = 0 : ret[word]++;7

}8
return ret;9
}10

11
/* Main function for process the input text */12
function main(string text) {13
int length = len(text);14

15
mapping tempRet1 = count(text[0 : length/2]);16
mapping tempRet2 = count(text[length/2 : length]);17

18
/* Join the two temporary values by embedded function */19
return join(tempRet1, tempRet2);20
}21
}22

Enable data r/w recording

Enable parallelization

(a) Traditional smart contract programming.
The two count(…) functions are executed in serial.

(b) Smart contract programming with PaVM.
The two count(…) functions can be executed in parallel.

Fig. 10: Example for key interfaces. The developers can enable PaVM features with some tiny modifications.

metadata by the RWS instruction. The R/W set is the input of
the transaction grouping.

D. Runtime System

1) Machine state: Machine state stores the temporary data
such as instruction operands and contract variables during
contract execution [36]. In traditional EVM, the machine
state only stores the data generated by a single thread. When
utilizing multiple threads to execute functions, these threads
may concurrently access the same machine state location. To
address this issue, we propose Thread Data and Thread State
Table to store thread data independently to avoid the R/W
conflicts in the machine state. Besides, managing massive
return values in the machine state requires considering how
to store the generated data by multiple threads in appropriate
locations. We store the indexes of the return values in Thread
Data and the specific values in Temporary Data. We redesign
the traditional machine state to solve the above problems in
PaVM.

Thread Data stores the call data and return value metadata
for subthreads. Call data includes the function selector and
arguments. The function selector indicates the function to be
invoked, while the arguments represent the inputs for the
invoked function. The return value metadata is written to
Thread Data upon completion of a subthread and includes
offset and size in Temporary Data. The return value metadata
can be empty, as a function may return without any values.

Record Data stores the runtime information generated by
the runtime recording instructions such as RDR and WTR. There
are several kinds of runtime data supported by PaVM: data
R/W set, Temporary Storage R/W set, etc. The data in Record
Data is delivered to support transaction grouping and receipt
generation. All the runtime information is stored in Record
Data until it is consumed in the validation process.

Thread State Table is provided to record the state of
threads. For instance, a thread updates its state to Running
to the Thread State Table when it begins to run. At the end of
thread execution, it updates its state to Return and writes its
return value metadata to the corresponding Thread Data.

Besides, the following structures in traditional SCVM are
required to store the main thread data:

Stack stores instruction operands and temporary variables.
The maximum height of Stack is defined as 1024 in PaVM
for compatibility with traditional SCVM like EVM. The Stack
is operated by stack-related instructions such as PUSH. The
Stack also stores call data of threads through thread control
instructions. The call data in Stack is transferred to Thread
Data.

Persistent Storage stores persistent data such as global
variables within a contract. The data in Persistent Storage is
stored in blockchain persistently after contract execution, and
it is accessible to all threads.

Temporary Data stores complex variables (e.g., mapping,
array) and return values of the subthreads. The return values
of each specific thread are written to Temporary Data based
on their respective offset and size.

2) Thread State and Management: To monitor whether a
thread is running or terminated, it is necessary to design the
thread state in runtime system. The thread state design in
PaVM is inspired by the Goroutine’s state in Golang2. PaVM
excludes the state involving data competition, which can be
avoided through data control instructions.

The thread state in PaVM includes: Preparing, Running,
Waiting, Return, and Revert. Preparing refers to the execution
environment validation (e.g., Stack overflow). Running denotes
that the function is executing on a thread with associated call
data. Waiting indicates that the thread is waiting for other

2github.com/golang/go/src/runtime/runtime2.go



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Call data
for Foo()

Foo Thread 
Data

selector

Foo(…) Bar(…)

Call data
for Bar()

args[…]
size

offset

Return 
value

metadata

Bar Thread 
Data

selector
args[…]

size
offset

Temporary
Data

Bar ret[0]
…

Bar ret[n]
…

Thread 
State Table…

G G G

P P P

C C C

Bar
return 
values

P P

C

Kernel
thread

Kernel
thread

Kernel
thread

Kernel
thread

User
space

Kernel
space

…

…

… …

… …

… …

Foo selector
args[…]

Bar selector
args[…]

…
Stack Record Data

readSet[…]
writeSet[…]
journal[…]
dbOps[…]

runtime info

… …

G G G… G G G… G G G…

Fig. 11: The runtime system of PaVM.

threads’ R/W operations. Return represents that the thread
has written the return values to the corresponding location
(otherwise the state is Running). Revert is important as a
transaction may be reverted. All the operations by the reverted
thread should be withdrawn. During contract execution, the
main thread maintains a thread state table to record the thread
state. The main thread appends the new thread state to the table
when it uses system calls (e.g., clone()) to create a subthread.
The state in the table is then updated by the corresponding
subthread. The main thread constantly monitors the state of
each thread. Once the thread state is Return or Revert, the
main thread retrieves the return value from the corresponding
thread’s temporary data area. Then the subthread’s temporary
data area is released.

The thread management is implemented in the runtime
system. PaVM executes multiple functions in multiple kernel
threads during contract execution. As shown in Fig. 11, the
subthread call data is stored in Stack by subsol instruction.
The call data is then transferred to the corresponding Thread
Data. The thread state is maintained in Thread State Table.
In PaVM, we exploit the GCP model [37] to realize parallel
execution. The subthreads that run different functions are
started by several different Goroutines [38]. For example,
Foo and Bar functions are loaded in different Goroutines.
The different Goroutines are appended to different G queues
mounted on distinct Processors. Lastly, the different Processors
are bound to different Cores. Each Core corresponds to a
kernel thread. In this case, Foo and Bar functions run on two
kernel threads, then run on different CPU cores after being
scheduled by the operating system. During main thread and
subthreads execution, the runtime information is recorded in
Record Data to support parallel transaction validation.

We give a snippet of a smart contract with new interfaces
(i.e., subsol) to illustrate the schedule of parallel execution.
As shown in Fig. 12, the contract uses the keyword subsol

to define two threads to execute foo and bar functions in
parallel, respectively. PaVM runtime first stores the invoke
data such as function identifier and arguments in Stack, and
stores the thread states in Thread State Table. During contract
execution, PaVM runtime maintains three kinds of struct
to realize thread management: goroutine (G), processor (P),
and Core (C). G is a lightweight coroutine with contract
function information, P is a coroutine queue manager, and
C is a mapping between user thread and kernel thread. PaVM
runtime starts two Gs in user space, the two Gs record the
function information such as entry address. Then runtime
puts the Gs to queues under different Ps according to the
load balancing principle. P decides which G can be executed
according to scheduling rules such as short-task first. After
that, P picks a free C to execute the contract function in the
kernel thread. The schedule of kernel threads used in PaVM
is the default rule of Linux, i.e., Completely Fair Scheduler
(CFS).

Overall, the GPC model with both user space and kernel
space scheduling can hold vast user threads, and different
contract functions can be assigned to different kernel threads
to be executed in parallel.

E. Parallel Transaction Validation

The transaction validation benefits from runtime recording
instructions in PaVM. PaVM is able to transfer the complete
14 kinds of runtime information such as storageChange

and nonceChange from the runtime system to validation.
The traditional methods can only discover two kinds of
information (storageChange and balanceChange) related
to data R/W operations. For the miner-validator style, the
miner executes the contracts to record the entire runtime
information, then the transactions are grouped by the disjoint
set algorithm according to the recorded data. The grouping
information is recorded in the block header, which will be
broadcast to validators. The validator performs parallel val-
idation between transaction groups based on the grouping
information. In PaVM, transaction receipts are generated based
on intermediate operations rather than intermediate states. The
R/W operation-based receipt generation can ensure both the
correctness of operations in SCVM and the consistency of the
blockchain state.

Transaction grouping. PaVM adopts a disjoint set to group
transactions, because the disjoint-set algorithm just brings
small-scale computations [39]. We use Txs to represent the
transactions in a block, RS and WS denote the read set and
write set generated by runtime recording instructions during
execution. The group is defined to store grouping information.
Each transaction initializes a single group. Next, iterating
through the transactions from the first transaction in Txs.
The transactions without read-write, write-write, or write-read
conflicts can be divided into the same group. Lastly, the
algorithm returns the grouping information. In parallel valida-
tion, the transactions are processed in parallel between groups



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

and serially within groups. During grouping, the algorithm
analyses both the data R/W conflicts in traditional methods
and other runtime information such as log recording and nonce
changing. The grouping with all runtime information brought
by PaVM is more precise, ensuring the consistency of the
blockchain state.

R/W operation-based receipt generation. In PaVM, trans-
action receipts are generated based on R/W operations con-
ducted in each smart contract. The receipts are computed by
using intermediate data R/W operations rather than the inter-
mediate state. The R/W operations are recorded via runtime
recording instructions during execution. The R/W operation-
based receipt generation is shown in Fig. 13. The data R/W
set is produced by runtime recording instructions, and the set
is composed of data R/W operations and orders. Each data
R/W operation has several fields such as storage location and
value. Each operation is summarized as a hash value by wHash

or rHash instruction. All operation hashes are summarized
as transaction receipts. Benefits from the runtime recording
instructions, all the operations can be entirely recorded for
generating receipts which help ensure the correctness of the
intermediate operations and consistency of the blockchain
state.

IV. EVALUATION

To validate the design point of PaVM and demonstrate its
performance benefits, we deploy experiments on the Ethereum
testnet and the multiple-core equipped CPU platform. The
objectives of the evaluation are fourfold: (1) testing the
performance improvement of PaVM compared with Geth in
transaction validation; (2) testing the performance improve-
ment of PaVM compared with EVM in contract execution;
(3) providing insights of PaVM’s outperforming its peers; and
(4) studying the impact of PaVM on the original system.

A. Experimental setup
PaVM is built based on the following hardware and soft-

ware:

Hardware. According to the previous work [6], we employ
four servers equipped with Xeon E5-2630 CPUs (2.3 GHz, 40
Cores) and 96GB of memory to establish PaVM’s testbed. We
run 25 blockchain nodes to evaluate the overall experiments
and eight nodes for other experiments. We leverage more
nodes in the overall experiments to demonstrate the scalability
of our solution.

Software. The smart contract programming language is
Solidity, the corresponding compiler is Solc (v0.4.20). The
Ethereum test network is built by Geth (v1.10). The numerical
results are recorded by the Web3PY framework [40] from
the Process function3 (transaction validation) and the Run

function4 (contract execution).

Workload Used for Explanation

1 MatrixMul

Intra-contract parallelism

Different threads compute different parts of the matrix.
2 MatrixAdd

3 Substring Different threads process different text segments.

4 Histogram Different threads process different input array segments.

5 ERC20

Inter-contract parallelism

The R/W operations on balance/account are atomic.

6 Fibnacci The Fibnacci computations are serial.

7 CPUHeavy The sort algorithm is serial and cannot be spilt.

8 KVStore The R/W operations on blockchain state data are atomic.

TABLE III: The workload characteristic description.

Benchmarks. Considering that different workloads have
different computational characteristics, the workloads we used
have two categories: one part is for evaluating the performance
of inter-contract parallelism, and the other part is for evaluating
the performance of intra-contract parallelism. For example,
the Substring contract is suitable for intra-contract parallelism
because each thread in the contract can handle different string
segments. The KVstore contract simulates the reading and
writing operations of blockchain data. This contract is more
suitable for inter-contract parallelism evaluation because the
read and write operations are atomic operations. Overall, as
shown in Table III, the workloads suitable for multi-threading

3github.com/ethereum/go-ethereum/blob/master/core/state processor.go
4github.com/ethereum/go-ethereum/blob/master/core/vm/interpreter.go

Foo(…) Bar(…)
Thread 

State Table…

G G G

P P P

C C C

P P

C

Kernel
thread

Kernel
thread

Kernel
thread

Kernel
thread

User
space

Kernel
space

Local
G queue
of each P

…

…

… …

… …

… …

… …

G G G… G G G… G G G…

contract Demo {1

2

function main(string args[…]) {3

/* do something */4

……5

int m = subsol foo(arg_a, arg_b, …);6

int n = subsol bar(arg_x, arg_y, …);7

/* do something else */8

……9

}10

11

/* foo and bar are sub functions */12

function foo(string args[…]) {13

……14

}15

16

function bar(string args[…]) {17

……18

}19

/* other functions def */20

……21

}22

hash(Foo)

arg_a
arg_b

hash(Bar)

arg_x

Stack

arg_y
…

User 
thread

Interpret and execute 
the instructions in 

Foo(…)

Interpret and execute 
the instructions in 

Bar(…)

Fig. 12: Thread schedule in PaVM with the GCP model.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Receipt 1

State
1Tx #1

SCVM Write 1

w1Hash

Read 1 Write 2 Read N

r1Hash w2Hash

…

rnHash…

Write 3

w3Hash

Hash(loc,val,…) Hash(loc,…)

Hash(w1Hash, r1Hash, w2Hash, w3Hash, …, rnHash)

Data Read/Write order in Transaction #1Runtime 
recording

Tx #2 State
2

……

Fig. 13: The receipt generation based on R/W operations.

are utilized to evaluate intra-contract parallelism, and the
single-threaded applications are employed to evaluate inter-
contract parallelism.

The smart contracts for transaction validation are
ERC20 [41], Fibonacci, CPUheavy [42], and the KVstore
contract [42]. ERC20 contract implements the functions
related to blockchain tokens. Fibonacci contract computes
the Fibonacci sequence by a recursion function. CPU heavy
contract implements a quick sort for a given array. KVstore
contract performs massive reading and writing operations
for contract variables. The smart contracts for evaluating
the performance of contract execution are MatrixMul [4],
MatrixAdd [4], Substring [43], and Histogram contract [43].
The first two contracts implement matrix multiplication
and addition. The Substring contract implements matching
substrings within a long string. The Histogram contract is
used for finding the numbers in an array that satisfies the
input range.

Measure Metrics. We compare PaVM with Geth and EVM
in terms of the following metrics: (1) Latency. The main
goal of PaVM is accelerating contract execution and trans-
action validation. (2) Throughput. We evaluate the throughput
of transaction validation with both inter-contract and intra-
contract parallelism. (3) Hardware utilization. PaVM pursues
higher hardware utilization to achieve fast transaction valida-
tion and contract execution.

B. Latency

We evaluate latency from three aspects: (1) Overall latency
to demonstrate the effectiveness of PaVM with both inter-
contract and intra-contract parallelism, (2) contract execution
latency comparison between PaVM and EVM, (3) transaction
validation latency comparison between our proposal and Geth.

1) Overall latency: We compare the overall latency of
PaVM with Geth on seven contracts including Fibonacci,
Histogram, etc., with different computational scales (contract
inputs), as shown in Fig. 14. PaVM enables both inter-contract
and intra-contract parallel execution.

The transaction validation has three main steps: extracting
transactions from the block, contract execution, and receipt
generation. The overall latency refers to the time from trans-
action extraction to receipt generation. The results show that
compared with Geth, PaVM achieves 17.5×, 17.7×, 18.5×,
33×, 26.7×, 33.6×, and 21× speedups on average for seven
different contracts, respectively. The latency can be reduced by
more than 95.4% on average for these contracts. Results also

show that the overall transaction validation can achieve the
speedup by 3×, 1.3×, and 2.7× on average among the eight
contracts, compared with the methods in [6], [7], and [44],
respectively. PaVM can significantly improve the performance
of transaction validation with the help of inter-contract and
intra-contract parallelism.

PaVM is particularly well-suited for executing tasks such
as Substring, since a Substring task can be broken down into
smaller computations that can be processed in parallel. Note
that as the task size increases, the time to process the task
increases, but the speedup ratio is similar because the number
of CPU cores limits the parallelism of PaVM, which ultimately
affects performance.

2) Contract execution latency: The execution latency is
evaluated on MatrixMul, MatrixAdd, Substring, and His-
togram contracts. We perform addition and multiplication on
40 matrices, matching the quantity of CPU cores. We split the
string and array on Substring and Histogram contracts into
40 slices to facilitate parallel contract execution, as shown in
Fig. 15.

In MatrixAdd, as shown in Fig. 15a, the latency can be
reduced by 69.1%, 74.8%, 73.7%, 80%, and 83.6% with dif-
ferent matrix sizes (from 90×90 to 210×210). The matrix size
is changed from 40×40 to 80×80 in MatrixMul. Compared
with EVM, the latency is reduced by 86.3%, 89.1%, 92.6%,
91.9%, and 93.9% under different matrix sizes in MatrixMul
(see Fig. 15b). For the matrix operations, the latency reduction
reaches 83.5% on average. With the increment of matrix size,
the intra-contract acceleration gets more effective.

For Substring, the string size changes from 12,000 to
28,000, as shown in Fig. 15c. In PaVM, the latency can be
reduced by 95.3%, 95.3%, 95.3%, 95.4%, and 95.5% under
different string lengths, compared with EVM, achieving 22×
speedups on average. For Histogram, the integer array size
changes from 30,000 to 70,000. The results in Fig. 15d show
that PaVM reaches 20.9× speedups on average under different
array sizes. The latency is significantly reduced by 95.2% in
PaVM for the Substring and Histogram contracts on average,
compared with EVM.

3) Transaction validation latency: We conduct transaction
validation latency on ERC20, Fibonacci, CPUheavy, and KVs-
tore contracts with different computational scales. We examine
the function type, length of Fibonacci sequence, array size
for quick sort, and the numbers of data read/write of ERC20,
Fibonacci, CPUheavy, and KVstore contracts, respectively.

The number of transactions for validation is 300, which
roughly equals the average transaction number in a block in
Ethereum. Fig. 16a shows the results of ERC20. Compared
with Geth, the parallel validation in PaVM reduces the la-
tency by 75%, 68.3%, and 68% for approve, transfer,
and transferFrom function, respectively. For Fibonacci, the
latency of PaVM can be reduced by 94.3% on average with
the length of the Fibonacci sequence changes from 50,000 to
350,000 (see Fig. 16b). For CPUHeavy, in Fig. 16c, with the
array size increased (from 90 to 210), the latency is reduced
from 94.1% to 94.5% gradually in PaVM. The validation
latency is significantly reduced from 12.7s in Geth to 0.68s
in PaVM with the same array size of 210. For the KVstore



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

0

5

10

15

20

25

30

AP
PR TR TR
F 5 10 15 20 25 30 35 90 12
0

15
0

18
0

21
0 R6 R8 R1
0

W
6

W
8

W
10 15 20 25 30 35 60 80 10
0

12
0

14
0

30
0

40
0

50
0

60
0

70
0 6 8 10 12 14

ERC20
(~4x)

Fibonacci
(~17.5x)

CPUheavy
(~17.7x)

KVstore
(~18.5x)

MatrixMul
(~33x)

MatrixAdd
(~26.7x)

Substring
(~33.6x)

Histogram
(~21x)

La
te

nc
y 

(m
s)

Transaction validation latency under different computational scales

Geth PaVM Baseline [6] Baseline [7] Baseline [45]

Fig. 14: The overall latency comparison between baselines and PaVM on eight contracts with different computational scales.

90 120 150 180 210
Matrix size

0

1

2

3

La
te

nc
y (

s)

EVM
PaVM

(a) MatrixAdd

40 50 60 70 80
Matrix size

0

10

20

La
te

nc
y (

s)

EVM
PaVM

(b) MatrixMul

12 16 20 24 28
String size

0

5

10

15

20

La
te

nc
y (

s)

EVM
PaVM

(c) Substring

30 40 50 60 70
Array size

0.0

2.5

5.0

7.5

10.0

La
te

nc
y (

s)

EVM
PaVM

(d) Histogram

Fig. 15: Contract execution latency results comparison between EVM and PaVM with different computational scales.

APPR TR TRF
Function

0

10

20

30

La
te

nc
y (

m
s)

Geth
PaVM

(a) ERC20

5 10 15 20 25 30 35
Length

0

10

20

30

La
te

nc
y (

s)

Geth
PaVM

(b) Fibonacci

90 120 150 180 210
Array size

0

5

10

La
te

nc
y (

s)

Geth
PaVM

(c) CPUheavy

R6 R8 R10 W6 W8 W10
Operation

0

5

10

15

La
te

nc
y (

s)

Geth
PaVM

(d) KVstore

Fig. 16: Transaction validation latency results with different contract inputs. The transaction number in the block is 300.

contract, we explore the impact of data read and write on the
latency during transaction validation. In Fig. 16d, R6 means
reading a variable 6,000 times, and W10 means writing a
variable 10,000 times. The results show that PaVM reduces
the latency by 94.3% and 94.9% with massive data read and
write, respectively.

Next, we change the number of transactions in a block
(Fig. 17a) and the group size to observe validation latency
(Fig. 17b). With different numbers of transactions in a block,
PaVM demonstrates that it can reach 13×, 17.2×, 16.2×, and
19.2× speedups on average for ERC20, Fibonacci, CPUheavy,
and KVstore, respectively, compared with Geth. The maximum
speedup reaches 27× in the ERC20 contract with the number
of transactions of 300. In PaVM, the transactions are assigned
into different groups to be validated in parallel. The effect of
group size (total number of transactions is 300) on validation
latency is given in Fig. 17b. With the increment of group
size, the validation latency is increased from 2.78s to 81.9s in

Geth, and from 0.57s to 5.9s in PaVM validation, respectively,
because the number of groups that can be validated in parallel
is reduced. For various group sizes, the latency of PaVM is
reduced by 64.8%, 78.6%, 79.4%, and 79.8% on average for
the four contracts, respectively, compared with Geth.

Then, we explore the impact of parallelism on transaction
validation by adjusting the number of threads in PaVM.
Fig. 17c shows the results. More threads bring lower validation
latency, as more transactions can be validated in parallel. For
transferFrom function in the ERC20 contract, the latency
is reduced from 17ms to 1.8ms (9.4× speedups) when the
number of threads varies from 5 to 40. For the Fibonacci
contract with the length of 350,000, PaVM achieves 3.2×
speedups. For CPUheavy, the validation latency is reduced
from 6.7s to 1.1s with the increment of threads. For KVstore
contract, the latency is reduced by 74.5% (from 5.1s to 1.3s) in
PaVM. The average reduction of validation latency can reach
79.1% for the four contracts.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

50 100 150 200 250 300
Number of transactions

0

10

20

30

La
te

nc
y (

s)
ERC20-PaVM
Fib-PaVM
CPUheavy-PaVM
KVstore-PaVM

ERC20-Geth
Fib-Geth
CPUheavy-Geth
KVstore-Geth

(a) Different transaction numbers

10 20 30 40 50 60 70 80 90100
Group size

0

20

40

La
te

nc
y (

s)

ERC20-PaVM
Fib-PaVM
CPUheavy-PaVM
KVstore-PaVM

ERC20-Geth
Fib-Geth
CPUheavy-Geth
KVstore-Geth

(b) Different group sizes

5 10 15 20 25 30 35 40
Number of threads

0

2

4

6

La
te

nc
y (

s)

ERC20
Fibonacci

CPUheavy
KVstore

(c) Different thread numbers

10 20 30 50 60 100
Number of groups

3

5

6

10

15

30

Gr
ou

p 
siz

e

4.8

4.6

4.5

4.5

4.4

4.4

50 100 150
Latency (ms)

(d) Recording and grouping time

Fig. 17: Transaction validation latency and recording time results with different transaction scales.

0
200
400
600
800
1000
1200
1400
1600
1800
2000

A
PP
R TR TR
F 5 10 15 20 25 30 35 90 12
0

15
0

18
0

21
0

R
6

R
8

R
10 W
6

W
8

W
10 15 20 25 30 35 60 80 10
0

12
0

14
0

30
0

40
0

50
0

60
0

70
0

60
0

80
0

10
00

12
00

14
00

ERC20 Fibonacci CPUheavy KVstore MatrixMul MatrixAdd Substring Histogram

TP
S

Transaction Per Second (TPS) performance under different computational scales

Geth PaVM Baseline [6] Baseline [7] Baseline [45]

Fig. 18: The throughput comparison between baselines and PaVM on eight contracts with different computational scales.

Lastly, we consider the impact of PaVM on the original
Geth through recording runtime information and transaction
grouping. Fig. 17d shows the results. The x-axis represents the
number of transaction groups that can be validated in parallel,
the y-axis represents the group size, and each cell represents
the time. The product of the x-axis and y-axis of each cell rep-
resents the total transaction number in a block. The upper left
part of the heatmap represents a small number of transactions,
while the bottom right represents a large number. The lighter
the color of the heat map implies the shorter the time, and vice
versa. It is obvious that the recording and grouping latency
is proportional to the number of transactions. The average
latency for recording 300 transactions is only 4.5ms in PaVM.
In practice, the recording and grouping time can be ignored
during transaction validation. With the transaction number of
300, the recording time only accounts for 0.3% of the parallel
validation total time.

C. Transaction Throughput

Latency can demonstrate the efficiency of PaVM in process-
ing different kinds of tasks and is closely related to user ex-
perience. In this section, we examine the throughput of PaVM
because it reflects the number of tasks or transactions that
PaVM can handle in a fixed period. Throughput exhibits the
PaVM’s capability to process a large number of transactions
and tasks.

We evaluate the throughput of transaction validation on
seven contracts from Fibonacci to Histogram with differ-
ent computational scales as shown in Fig. 18. The unit of

throughput is TPS (transaction per second). The evaluation is
conducted with the default Proof-of-Work consensus. Overall,
the throughput of the entire system can be improved by 24.4×
compared with Geth. Compared with the methods in [6],
[7], and [44], the throughput improvement achieves 3× on
average among the eight contracts. Results show that for the
Fibonacci contract, the throughput can be improved from 26
TPS to 457 TPS on average. Especially, with a scale of 10,
the throughput is improved by 2.71× in PaVM, compared
with Geth. For CPUheavy contract, the throughput reaches
2,240 TPS with a scale of 90, and more than 440 TPS even
with the largest computational scale in PaVM. For KVstore
contract, the average throughput (27 TPS in Geth v.s. 498
TPS in PaVM) is smaller than that of other contracts.

The throughput of MatrixAdd and MatrixMul reaches more
than 1,650 TPS. For MatrixMul, with the increment of compu-
tational scale (from 10 to 35), PaVM can keep the TPS above
1,550, while the TPS in Geth is 17. The TPS in Substring
contract reaches nearly 1,800 with a size of 300 in PaVM,
while the TPS is only 60 in Geth. The TPS is maintained
at nearly 800 in PaVM even with the largest string size. For
Histogram contract, the highest throughput is 2,142 with a size
of 600 in PaVM, while the throughput is 916 with a size of
14,000. The maximum throughput in Geth is only 103.

D. Hardware Utilization

We evaluate the utilization of CPU cores to represent the
hardware utilization in validation and execution. Higher CPU
utilization means more sufficient usage of hardware resources



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

#1 #5 #10 #15 #20 #25 #30 #35 #40
CPU core

0%

50%

100%

EVM
PaVM

(a) MatrixAdd (matrix size=80)

#1 #5 #10 #15 #20 #25 #30 #35 #40
CPU core

0%

100%
EVM
PaVM

(b) MatrixMul (matrix size=80)

#1 #5 #10 #15 #20 #25 #30 #35 #40
CPU core

0%

100%
EVM
PaVM

(c) Substring (string length=80)

#1 #5 #10 #15 #20 #25 #30 #35 #40
CPU core

0%

50%

100%

EVM
PaVM

(d) Histogram (array size=80)

Fig. 19: CPU utilization results for contract execution.

#1 #5 #10 #15 #20 #25 #30 #35 #40
CPU core

0%

50%

100%
Geth
PaVM

(a) Fibonacci contract

#1 #5 #10 #15 #20 #25 #30 #35 #40
CPU core

0%

50%

100%

Geth
PaVM

(b) CPUheavy contract

#1 #5 #10 #15 #20 #25 #30 #35 #40
CPU core

0%

50%

100%

Geth
PaVM

(c) KVstore contract

Fig. 20: CPU utilization during transaction validation on different smart contracts.

and stronger processing capabilities. PaVM enables both inter-
contract parallelism and intra-contract parallelism on different
CPU cores. The subfunctions in PaVM are started by the
subsol keyword in PaVM. The CPU utilization is recorded
by the pprof toolkits in Golang.

1) Contract execution: We evaluate the CPU utilization
during contract execution with MarixMul, MatrixAdd, Sub-
string, and Histogram contracts. PaVM utilizes multiple CPU
cores to run matrix multiplication and addition for the first
two contracts, and process the slices of the input array for
the last two contracts. The CPU utilization in PaVM is
significantly higher than EVM, because the EVM can only
run all computations in a single core, while PaVM can utilize
all CPU cores and achieve load balancing.

The results of each CPU core utilization with the four
contracts are shown from Fig. 19a to Fig. 19d, respectively.
For the MatrixAdd contract with the matrix size of 80, PaVM
maintains the CPU utilization between 64.6% and 100%, while
the average utilization is only 6.4% in EVM. For MatrixMul
contract, the average CPU utilization is only 3.1% on 40 cores
in EVM, while the utilization is 93.7% in PaVM. In EVM,
the maximum CPU utilization is 98.12% on the #3 core. In
PaVM, the minimum utilization is up to 83%, and the average
utilization on 40 cores is 99.8%. In MatrixAdd contract, the
average CPU utilization in PaVM is slightly less than Mar-
trixMul, and PaVM has fluctuations in CPU utilization. The
reason is that MatrixAdd has smaller computations compared
to MatrixMul, and the computations are evenly assigned to
different CPU cores to achieve load balancing.

For Substring contract with a string length of 80, since each
core is arranged to perform a string slice, the utilization of all
cores is higher than 90% in PaVM. However, in EVM, only the
#2 core is used for contract execution with nearly 98%. Similar
to the results of the Substring, the performance of Histogram
contract is significantly improved by PaVM. With the help of
parallel execution in PaVM, the average CPU utilization of 40
cores is up to 99.91% with an array size of 80. In contrast,
the average CPU utilization in EVM is only 3%.

2) Transaction validation: The CPU utilization of vali-
dation is evaluated on Fibonacci, CPUheavy, and KVstore

contracts. Fig. 20 shows the results. For Fibonacci contract, as
shown in Fig. 20a, only core #25 is used for validation with
60.9% core utilization in Geth. The other cores with only 0.6%
utilization on average (for system services). In PaVM, all cores
are activated for validation with 98.3% utilization on average.
Specifically, 26 out of 40 cores’ utilization is greater than 98%.
The lowest utilization in PaVM reaches 95.3%. For CPUheavy
contract, in Fig. 20b, Geth only uses the #1 core to perform
validation with 94.7% utilization. The average utilization of
other cores (from #2 to #40) is only 0.7%, which is used for
other system services such as FTP and SSH. Compared with
Geth, PaVM with parallel validation significantly improves the
average utilization of all 40 cores to 95.4%. The maximum
and minimum utilization in PaVM are 92.4% (#11) and 100%
(#12), respectively.

The results for KVstore contract are as shown in Fig. 20c.
In Geth, only core #35 is actively engaged in validation with
73.2% utilization. The other 39 cores’ utilization is 0.52%
on average. Such situation is optimized by PaVM: all 40
cores are enabled for validation, and the average utilization
reaches 94.4%. Compared with Geth, PaVM improves the
CPU utilization by 40.3× (from 2.34% to 94.4%) across
all 40 cores. According to the above results, PaVM fully
utilizes hardware resources in comparison to Geth. The reason
is that Geth assigns the transactions to only a single core
for validation, while PaVM validates transactions on multiple
cores with thread management.

E. Discussion
According to the above results, it is clear that enabling

multiple cores for validation can obviously reduce latency,
enhance throughput, and improve CPU utilization. We discuss
the impact of PaVM in comparison to the original Ethereum
blockchain as follows.

1) System aspect: The I/O burden. PaVM brings no I/O
burden to the original Geth or EVM, as it has no read/write
operations on the hard disk during transaction validation and
contract execution. Besides, since PaVM does not change the
process of the miner-validator model, it has no impact on the
network communication latency.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

Network overhead. In both PoW-based and PBFT-based
blockchain systems, the newly created block with a R/W set
is broadcast to all validator nodes. Specifically, PBFT-based
systems utilize a three-phase protocol to reach consensus on
the new block [45], [46]. Once consensus is reached, the
validators proceed to validate the transactions contained in the
new block. PaVM optimizes the transaction validation at the
smart contract execution environment level. Therefore, PaVM
does not introduce extra network overhead even when the
consensus mechanism is modified.

Memory footprint. PaVM stores the thread data in Thread
Data Storage, which resides in memory (RAM). Each Thread
Data Storage occupies only nearly 1KB memory (RAM), as
it is implemented using a byte32 array with four elements.
Besides, PaVM imposes no disk storage burden, as PaVM
information and data for parallel execution and validation are
not stored on the hard disk. The information and data are
deleted after validation and execution.

Extra overhead. The extra overhead in parallel validation
in PaVM mainly stems from data R/W recording and disjoint-
set algorithm based transaction grouping. On one hand, instead
of complex static or dynamic analysis, the recording process
is simply making marks during pre-execution in the miner-
validator model. The recording time is proportional to the
number of reading and writing storage, so smart contracts
should minimize the reading and writing of storage. Further-
more, according to the experimental results, the R/W set size
amounts to 2.22KB across various real block sizes. The R/W
set size typically makes up just about 1% of the total block
size. On the other hand, the grouping time is proportional to
the number of transactions too. When the dependency between
transactions within a block is weak, the time for parallel
validation can cover the grouping time. In practice, the extra
overhead is very low, because the recording and algorithm just
need a few milliseconds, while the validation latency is several
seconds.

Design principle/balance. In the traditional miner-validator
model, the contract execution can be accelerated on both the
miner side and the validator side. In PaVM, we focus on
the validator side, as remaining the pre-execution step can
allow for more precise transaction grouping. Besides, in the
blockchain with Proof-of-Work (PoW) consensus, the bottle-
neck is the re-execution step rather than the pre-execution step.
Once the bottleneck shifts from consensus, the acceleration on
the miner side will bring higher performance.

2) Other aspects: Gas cost. In mainstream blockchains, gas
serves as a unit for representing the computational complexity
of a smart contract. In traditional virtual machine instructions,
most instructions are used for performing computations, such
as ADD, SUB, and SSTORE. However, since the new instructions
in PaVM do not involve any additional computations, PaVM
does not define the specific gas cost of new instructions. For
example, SUBSOL instruction is only used for starting new
threads to run the subfunctions, RWRITE is only used for
recording the variable writing situations to the memory.

The gas mechanism is also designed to limit the abuse
of computation resources. PaVM is proposed to support the
applications in private scenarios. In private scenarios, because

the members are trusted in the system, the computation
resources will not be abused by default. To facilitate system
management, PaVM provides a gas cost design interface in
the form of JSON files for system administrators to specify
the gas costs of new instructions.

Consensus mechanism. In modern blockchain system, the
consensus mechanism generally consists of three steps: block
generator/owner election, block broadcast, and block valida-
tion [46]. PaVM focuses on the last step (block validation), as
it aims to improve the performance of transaction validation
and contract execution through virtual machine design. Hence,
the different consensus algorithms have no impact on PaVM
performance.

V. RELATED WORKS

The related works accelerate transaction validation by par-
allel processing, which is enabled by transaction grouping and
other approaches.

Transaction grouping is based on a data read/write set. The
transactions are grouped according to whether the data read-
/write conflicts or not in the set. Transactions within a group
are processed in sequence, while all groups are processed in
parallel. The data read/write set can be generated in two ways
as follows: (1) Dynamic speculative execution. The spec-
ulative execution of smart contracts can detect data conflict
information by pre-execution. For instance, Dickerson et al. [9]
adopt a speculatively execution and rollback mechanism to
record parallel execution paths, then they are sent to validators
for parallel execution and validation. Jin et al. [6] also adopt
the optimistic concurrency control and rollback mechanism
to realize parallel execution in the validator. Nevertheless, in
speculative execution methods, for transactions with a high
number of data read/write conflicts, frequent rollbacks result
in high latency for speculative execution. (2) Static analysis.
For the static analysis methods, Yu et al. [44] propose a
parallel smart contract model, which utilizes static analysis
methods to find the common variables to group the transaction.
Aelf [47] blockchain groups the transactions based on the
mutex of transactions. The mutex of transactions is deter-
mined by shared variables in the transactions. Besides, FISCO
BCOS [48] blockchain is designed to group the transactions
according to a transaction dependency graph, which is also
generated by the shared variables. The independent nodes in
the graph can be executed in parallel. However, the static
methods generally assume that all common variables are bound
to generate read/write conflicts, this pessimistic concurrency
control leads to inefficiencies. PaVM can narrow the scope of
the data conflicts by dynamically recording the data read/write
set during the pre-execution of smart contract in the miner.

In addition, other methods are also explored to improve
the transaction validation performance. There are some ap-
proaches [49]–[51] that focus on blockchain sharding to
improve blockchain performance. These approaches shard
the blockchain into different areas, which can reduce the
complexity of consensus. Moreover, the transactions can be
validated in parallel in different areas. However, the perfor-
mance improvement brought by blockchain sharding is not



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

thorough enough, because it can only enable inter-contract
parallel execution. Besides, sharding the blockchain may raise
security concerns. Therefore, PaVM provides the runtime
environment and key instructions to realize the function-level
parallelism, and then enable intra-contract parallelism. Liu et
al. [7] design a paradigm for smart contract execution that uses
some nodes to execute contracts in parallel, but this paradigm
seriously affects the blockchain security because not every
node validates transactions and the blockchain is vulnerable to
distributed denial-of-service (DDoS) attacks. Garamvolgyi et
al. [52] ealize parallel execution by breaking up the application
conflict chains using the technologies such as partitioned
counters and commutative instructions. However, the solution
cannot make full use of the contract runtime information to
resolve the application conflicts precisely. PaVM can record
the entire runtime information by instruction design, and
provide the information to resolve application conflicts.

In summary, the aforementioned research works primarily
focus on the transaction level parallelism, they can not re-
alize thorough acceleration for validation. PaVM presents a
runtime system that supports both inter-contract and intra-
contract parallelism, thus achieving a significant improvement
in transaction validation.

VI. CONCLUSION

We present PaVM, the first smart contract virtual machine
that supports both inter-contract and intra-contract parallel
execution to accelerate transaction validation. PaVM facilitates
parallel execution by collecting runtime information in fine-
grained and enhances the runtime system with thread state and
management to improve contract execution efficiency. Experi-
mental results highlight that compared with Geth, PaVM sig-
nificantly improves the overall transaction validation efficiency
by nearly 33.4× on average, and improves the throughput by
46× on maximum.

REFERENCES

[1] S. Ponnapalli, A. Shah, S. Banerjee, D. Malkhi, A. Tai, V. Chidambaram,
and M. Wei, “{RainBlock}: Faster transaction processing in public
blockchains,” in 2021 USENIX Annual Technical Conference (USENIX
ATC 21), 2021, pp. 333–347.

[2] A. A. Zarir, G. A. Oliva, Z. M. Jiang, and A. E. Hassan, “Developing
cost-effective blockchain-powered applications: A case study of the gas
usage of smart contract transactions in the ethereum blockchain plat-
form,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 3, pp. 1–38, 2021.

[3] M. Fang, Z. Zhang, C. Jin, and A. Zhou, “High-performance smart
contracts concurrent execution for permissioned blockchain using sgx,”
in 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 2021, pp. 1907–1912.

[4] T. Li, Y. Fang, Y. Lu, J. Yang, Z. Jian, Z. Wan, and Y. Li, “Smartvm:
A smart contract virtual machine for fast on-chain dnn computations,”
IEEE Transactions on Parallel and Distributed Systems, 2022.

[5] P. Ruan, T. T. A. Dinh, D. Loghin, M. Zhang, G. Chen, Q. Lin, and B. C.
Ooi, “Blockchains vs. distributed databases: dichotomy and fusion,” in
Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 1504–1517.

[6] C. Jin, S. Pang, X. Qi, Z. Zhang, and A. Zhou, “A high performance
concurrency protocol for smart contracts of permissioned blockchain,”
IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 11,
pp. 5070–5083, 2021.

[7] J. Liu, P. Li, R. Cheng, N. Asokan, and D. Song, “Parallel and
asynchronous smart contract execution,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 5, pp. 1097–1108, 2021.

[8] “The ethereum blockchain explorer.” [Online]. Available: https:
//etherscan.io/

[9] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding
concurrency to smart contracts,” in Proceedings of the ACM Symposium
on Principles of Distributed Computing, 2017, pp. 303–312.

[10] Z. Chen, H. Zhuo, Q. Xu, X. Qi, C. Zhu, Z. Zhang, C. Jin, A. Zhou,
Y. Yan, and H. Zhang, “Schain: a scalable consortium blockchain
exploiting intra-and inter-block concurrency,” Proceedings of the VLDB
Endowment, vol. 14, no. 12, pp. 2799–2802, 2021.

[11] J. M. Faleiro, D. J. Abadi, and J. M. Hellerstein, “High performance
transactions via early write visibility,” Proceedings of the VLDB
Endowment, vol. 10, no. 5, 2017.

[12] Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu scheduling
for multi-dnn real-time inference,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2019, pp. 392–405.

[13] T.-W. Huang, D.-L. Lin, Y. Lin, and C.-X. Lin, “Taskflow: a general-
purpose parallel and heterogeneous task programming system,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 5, pp. 1448–1452, 2021.

[14] Y. Kim, S. Jeong, K. Jezek, B. Burgstaller, and B. Scholz, “An {Off-The-
Chain} execution environment for scalable testing and profiling of smart
contracts,” in 2021 USENIX Annual Technical Conference (USENIX
ATC 21), 2021, pp. 565–579.

[15] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, “Smart contract development: Challenges and opportunities,”
IEEE Transactions on Software Engineering, vol. 47, no. 10, pp. 2084–
2106, 2019.

[16] X. T. Lee, A. Khan, S. Sen Gupta, Y. H. Ong, and X. Liu, “Mea-
surements, analyses, and insights on the entire ethereum blockchain
network,” in Proceedings of The Web Conference 2020, 2020, pp. 155–
166.

[17] K. Wüst, S. Matetic, S. Egli, K. Kostiainen, and S. Capkun, “Ace:
Asynchronous and concurrent execution of complex smart contracts,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, pp. 587–600.

[18] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He et al., “Soda: A generic online detection framework for
smart contracts.” in NDSS, 2020.

[19] T. Lu and L. Peng, “Bpu: A blockchain processing unit for accelerated
smart contract execution,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[20] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Exploiting
the laws of order in smart contracts,” in Proceedings of the 28th ACM
SIGSOFT international symposium on software testing and analysis,
2019, pp. 363–373.

[21] S. Bistarelli, G. Mazzante, M. Micheletti, L. Mostarda, D. Sestili, and
F. Tiezzi, “Ethereum smart contracts: Analysis and statistics of their
source code and opcodes,” Internet of Things, vol. 11, p. 100198, 2020.

[22] B. Pillai, K. Biswas, Z. Hóu, and V. Muthukkumarasamy, “Burn-
to-claim: An asset transfer protocol for blockchain interoperability,”
Computer Networks, vol. 200, p. 108495, 2021.

[23] Q. Wang and R. Li, “A weak consensus algorithm and its applica-
tion to high-performance blockchain,” in IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. IEEE, 2021, pp. 1–10.

[24] Y. Zhou, A. N. Manea, W. Hua, J. Wu, W. Zhou, J. Yu, and S. Rahman,
“Application of distributed ledger technology in distribution networks,”
Proceedings of the IEEE, 2022.

[25] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global
naming and storage system secured by blockchains,” in 2016 USENIX
annual technical conference (USENIX ATC 16), 2016, pp. 181–194.

[26] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 161–
178.

[27] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Checking smart con-
tracts with structural code embedding,” IEEE Transactions on Software
Engineering, 2020.

[28] P. Zheng, Z. Zheng, and X. Luo, “Park: accelerating smart contract vul-
nerability detection via parallel-fork symbolic execution,” in Proceedings
of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2022, pp. 740–751.

[29] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

[30] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defectchecker:
Automated smart contract defect detection by analyzing evm bytecode,”
IEEE Transactions on Software Engineering, 2021.

[31] O. Farhat, K. Daudjee, and L. Querzoni, “Klink: Progress-aware schedul-
ing for streaming data systems,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 485–498.

[32] M. Rodler, W. Li, G. O. Karame, and L. Davi, “{EVMPatch}: Timely
and automated patching of ethereum smart contracts,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 1289–1306.

[33] J.-Y. Kim, J. Lee, Y. Koo, S. Park, and S.-M. Moon, “Ethanos:
efficient bootstrapping for full nodes on account-based blockchain,”
in Proceedings of the Sixteenth European Conference on Computer
Systems, 2021, pp. 99–113.

[34] L. Su, X. Shen, X. Du, X. Liao, X. Wang, L. Xing, and B. Liu, “Evil
under the sun: understanding and discovering attacks on ethereum decen-
tralized applications,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 1307–1324.

[35] N. He, R. Zhang, H. Wang, L. Wu, X. Luo, Y. Guo, T. Yu, and X. Jiang,
“{EOSAFE}: Security analysis of {EOSIO} smart contracts,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 1271–
1288.

[36] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, “ethor:
Practical and provably sound static analysis of ethereum smart con-
tracts,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 621–640.

[37] M. Chabbi and M. K. Ramanathan, “A study of real-world data races
in golang,” in Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
2022, pp. 474–489.

[38] Z. Liu, S. Xia, Y. Liang, L. Song, and H. Hu, “Who goes first?
detecting go concurrency bugs via message reordering,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 888–902.

[39] P. Veličković, L. Buesing, M. Overlan, R. Pascanu, O. Vinyals, and
C. Blundell, “Pointer graph networks,” Advances in Neural Information
Processing Systems, vol. 33, pp. 2232–2244, 2020.

[40] E. Kafeza, S. J. Ali, I. Kafeza, and H. AlKatheeri, “Legal smart
contracts in ethereum block chain: Linking the dots,” in 2020 IEEE 36th
International Conference on Data Engineering Workshops (ICDEW).
IEEE, 2020, pp. 18–25.

[41] A. Li, J. A. Choi, and F. Long, “Securing smart contract with runtime
validation,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 438–453.

[42] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM international conference on management
of data, 2017, pp. 1085–1100.

[43] J. Cheng, S. T. Fleming, Y. T. Chen, J. Anderson, J. Wickerson,
and G. A. Constantinides, “Efficient memory arbitration in high-level
synthesis from multi-threaded code,” IEEE Transactions on Computers,
vol. 71, no. 4, pp. 933–946, 2021.

[44] W. Yu, K. Luo, Y. Ding, G. You, and K. Hu, “A parallel smart contract
model,” in Proceedings of the 2018 International Conference on Machine
Learning and Machine Intelligence, 2018, pp. 72–77.

[45] H. Sukhwani, J. M. Martı́nez, X. Chang, K. S. Trivedi, and
A. Rindos, “Performance modeling of pbft consensus process for per-
missioned blockchain network (hyperledger fabric),” in 2017 IEEE 36th
symposium on reliable distributed systems (SRDS). IEEE, 2017, pp.
253–255.

[46] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, “A
scalable multi-layer pbft consensus for blockchain,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1146–1160, 2020.

[47] “aelf - a multi-chain parallel computingblockchain framework,”
2022. [Online]. Available: https://aelf.com/gridcn/aelf whitepaper v1.
7 en.pdf

[48] “Financial blockchain open source platform - fisco bcos,” 2017.
[Online]. Available: https://github.com/FISCO-BCOS/whitepaper/blob/
master/FISCO%20BCOS%20Whitepaper(EN).pdf

[49] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” arXiv preprint
arXiv:1708.03778, 2017.

[50] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE symposium on security and privacy (SP).
IEEE, 2018, pp. 583–598.

[51] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proceedings of

the 2019 international conference on management of data, 2019, pp.
123–140.

[52] P. Garamvölgyi, Y. Liu, D. Zhou, F. Long, and M. Wu, “Utilizing
parallelism in smart contracts on decentralized blockchains by taming
application-inherent conflicts,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 2315–2326.

Yaozheng Fang is currently working toward his
Ph.D. degree in the College of Computer Science,
Nankai University. His main research interests in-
clude computer system, smart contract architecture,
and blockchain system.

Zhiyuan Zhou received the master’s degree in
computer science from the Chinese Academy of
Sciences, Beijing, China, in 2007. He is currently a
Staff Engineer with Blockchain Platform Division,
Ant Group, Hangzhou, China. He is currently lead-
ing a team to deliver the core engine of Antgroup’s
consortium blockchain system, specifically designed
for Internet scale asset exchange. Besides engineer-
ing, he is doing research on blockchain scalability.
He also had profound experience in cloud comput-
ing.

Surong Dai received her B.S. degree in computer
science and technology from Nankai University,
Tianjin, in 2020. She is currently working toward her
Ph.D. degree in the College of Computer Science,
Nankai University, Tianjin. Her main research inter-
ests include computer architecture, compiler design,
and blockchain virtual machine.

Jinni Yang received her B.Eng. degree in Internet
of Things from Nankai University in 2020. She is
currently studying for a master’s degree in computer
science in Nankai University. Her main research is
in blockchain security.

Hui Zhang (Senior Member, IEEE) received the
Ph.D. degree in computer science from the Uni-
versity of Southern California, Los Angeles, CA,
USA, in 2005. He is currently the Senior Di-
rector of the Blockchain Platform Division, Ant
Group, Hangzhou, China, and also the Head of the
Blockchain Laboratory, Alibaba Damo Academy,
Hangzhou. He is responsible for the R&D and
commercialization of Ant Group’s blockchain tech-
nology. Prior to joining Ant Group, he was the Head
of the Department of Systems Research, NEC Labo-

ratories America, Princeton, NJ, USA, focusing on R&D for high-performance
distributed systems and networks, especially peer-to-peer network algorithms
and big data analytics.

Ye Lu received the B.S. and Ph.D. degree from
Nankai University, Tianjin, China in 2010 and 2015,
respectively. He is an associate professor and doc-
toral supervisor at the College of Computer Science,
and College of Cyber Science, Nankai University
now. His main research interests include computer
architecture and FPGA accelerator, virtual machine,
embedded system software-hardware co-design.


