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Abstract—Blockchain-based artificial intelligence (BC-AI) has been applied for protecting deep neural network (DNN) data frombeing

tamperedwith, which is expected to further boost trusted distributedAI applications inmany fields. However, due to smart contract execution

environment architectural defects, it is challenging for previous BC-AI systems to support computing-intensive tasks on-chain performing

such asDNNconvolution operations. They have to offload computations and a large amount of data from blockchain to off-chain platforms

to execute smart contracts as native code. This failure to take advantage of data locality has become one of themajor critical performance

bottlenecks in BC-AI system. To this end, in this article, we propose SmartVMwith optimizationmethods to support on-chain DNN inference

for BC-AI system. The key idea is to design and optimize the computingmechanism and storage structure of smart contract execution

environment according to the characteristics of DNN such as high computational parallelism and large data volume.We decompose

SmartVM into three components: 1) a compact DNN-oriented instruction set to describe computations in a short number of instructions to

reduce interpretation time. 2) amemorymanagementmechanism tomakeSmartVMmemory dynamic free/allocated according to the size

of DNN featuremaps. 3) a block-basedweight prefetching and parallel computingmethod to organize each layer’s computing andweights

prefetching in a pipelinedmanner.We perform the typical image classification in a private Ethereumblockchain testbed to evaluate

SmartVM performance. Experimental results highlight that SmartVM can support DNN inference on-chain with roughly the same efficiency

against the native code execution. Compared with the traditional off-chain computing, SmartVM can speed up the overall execution by 70�,

16�, 11�, and 12� over LeNet5, AlexNet, ResNet18, andMobileNet, respectively. Thememory footprint can be reduced by 84%, 90.8%,

94.3%, and 93.7% over the above four models, while offering the same levelmodel accuracy. This article sheds light on the design space of

the smart contract virtualmachine for DNN computation and is promising to further boost BC-AI applications.

Index Terms—Deep neural network, smart contract, virtual machine, architectural support technology’
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1 INTRODUCTION

BLOCKCHAIN-BASED artificial intelligence (BC-AI) has been a
new researching hotspot [1], [2], [3], expected to boost

trusted distributed AI training and inference [4], [5], [6], such
as protecting deep neural network (DNN) data from being
tampered [7], [8]. Smart contract is a piece of codewhich can be
deployed on blockchain for executing application logic [9],
[10]. Various blockchains have provided execution environ-
ment or virtual machine, such as Ethereum Virtual Machine
(EVM) [11], [12], for interpreting and executing smart contract.
The execution on virtual machine of the smart contract
deployed on the blockchain is called on-chain computing and
conducting the smart contract out of the virtual machine is cor-
respondingly called off-chain computing [13], [14], [15].

The existing main stream smart contract virtual machines
have limited BC-AI application scope and further develop-
ment, since previous they cannot process complex tasks. For
example, although the smart contract virtual machines such
as EVM sustain more than 3,200 kinds of Dapps [15], there is
no DNN application that can run on the blockchain [16].
DNN inference as yet cannot be directly and efficiently
performed on blockchain by smart contract [17], [18]. The
primary reason is that the smart contract execution environ-
ment in previous BC-AI system lacks operators, instructions
and corresponding mechanism to support redundant com-
plex DNN operations with high computational and memory
complexity.

These issues lead to the existing BC-AI applications on
blockchain that can only simply store a large amount of
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DNN weight data as a database. Computing-intensive tasks
such as DNN convolutions have to be offloaded to the off-
chain platform, executed as native code, and still need to
download weight data from the blockchain. Unfortunately,
downloading data is one of the most critical performance
bottlenecks in traditional blockchain-based AI systems,
which usually requires tens of thousands interface invoking
and large latency.

In view of the above problems, on-chain computing turns
out to be a convenient alternative and can lead to several ben-
efits in terms of close to data source, avoiding data download
latency and trusted execution, etc. Many previous related
works in other areas have pointed out that, the better design
for distributed systems is to move computation tasks to
where the data is [19], [20]. Therefore, to take advantage of
data locality, on-chain computing as the move computation to
data paradigm ismore natural for DNN inference.

Both academia and industry have paid attention to DNN
inference on smart contract virtual machine [21]. They make
explorations that allow sustaining the computational burden
of DNN inference on the blockchain. The explorations aim at
providing trusted computing processes, fueling intelligent
applications without high latency, and conducting complex
computations for BC-AI systems. For instance, Kim et al. [22]
have processed DNN inference on-chain, but they utilize the
mature JavaScript VirtualMachine rather than themost com-
monly used smart contract engine EVM for blockchain. Kon-
stantin Kladko gives a hypothetical example in Ethresearch1

and he describes a decentralized, trusted, fair and automatic
Uber which runs a neural network based on driver history
behaviors with smart contracts, to explain the advantages of
running DNN on EVM. Nonetheless, these two examples
have not been implemented in reality, since they both cannot
meet the challenges that in order to perform convolution
operations, DNN usually requires high computing power
and an amount of memory space to store lots of immediate
results.

In fact, introducing DNN computing to previous EVM on
the blockchain can pose several difficult systemic challenges.
First, there are no specific operation instructions, meanwhile,
the general EVM instruction set will generate tens of millions
of instructions for DNN inference. Interpreting and execut-
ing so many instructions will take a lot of time, which cannot
satisfy the requirements of real applications. Second, all the
operations on EVM are executed serially and the serial exe-
cution will also bring higher latency [23], [24], [25]. A large
number of convolution computations and weight fetching
from EVM storage in serial are so time-consuming without a
parallel computing mechanism. For example, a single image
inference over LeNet-5 on EVM can take more than 2.5 sec-
onds, while the most common DNN applications only need
dozens of milliseconds [26]. Third, the existing virtual
machine EVM architecture designed for running small-scale
programs has no runtimememory spacemanagementmech-
anism during smart contract execution [23]. DNN (e.g., Alex-
Net, ResNet) inference cannot run on the EVM solidly
without memory overflow, because the inference will cause
a high memory footprint, and lead to the Out-of-Memory

exception in common resource-limited devices. To meet
these challenges, fast on-chain DNN computation requires
fine-grained architecture level design and corresponding
mechanism support.

To this end, we present SmartVM, a new smart contract
virtual machine for fast on-chain DNN computations.
SmartVM can also enable smart contract execution on het-
erogeneous devices such as GPU, and offer roughly the
same executing performance compared with CPU/GPU.
The key idea is to provide specific instructions and multiple
optimization mechanisms and techniques for the complex
inference process of DNN. Our novel contributions in this
paper can be summarized as follows:

� We design DNN-oriented domain-specific instruc-
tions having a strong descriptive capability for DNN.
Compared with running under EVM, the DNN infer-
ence efficiency in SmartVMwith the proposed instruc-
tions can be accelerated by up to 38�.

� We propose a dynamic memory management
method by designing the Buffer technique on EVM
memory at runtime. The proposed mechanism real-
izes the physical RAM space multiplexing, since the
Buffer can adjust size flexibly to store only one layer’s
feature maps rather than all layers’ feature maps.
This mechanism can significantly reduce the RAM
footprint by 90.7% on average.

� We propose the block-based weight prefetching
method and parallel computing mechanism. The
weight data can be prefetched and loaded in block-
wised rather than a single value, and the times of
memory access can also be reduced. These approaches
can hide the executionwaiting time and improve com-
puting efficiency by 13.1% on average.

� We implement SmartVM by embedding it as a block-
ing component into Ethereum as a smart contract
virtual machine, and we evaluate SmartVM by con-
ducting typical image classification tasks in a real
private Ethereum platform. Compared with DNN
inference on CPU, the experimental results highlight
that SmartVM can support DNN inference on-chain
with roughly the same efficiency against the native
code execution.

2 BACKGROUND AND MOTIVATION

In this section, we draw our motivations and key idea about
SmartVM design from two aspects. First, we give some pre-
liminary concepts of DNN (in the particular, convolutional
neural network, CNN) and its main characteristics. In this
paper, we use one of the representative DNN, CNN, to
show the characteristics of DNN, because CNN is one of the
most widely used DNNs, and the previous works also use
CNN to represent DNN such as [27]. Second, we give the
scenarios of on-chain CNN computing to show the motiva-
tion of SmartVM from the application respect. Third, we
analyze the CNN inference process performance under the
traditional typical BC-AI architecture to point out the disad-
vantages and shortcomings of off-chain computing. Lastly,
we elaborate on the existing limitations and challenges of
the complex computing on Ethereum Virtual Machine1. https://ethresear.ch/
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(EVM). In order to explain the details, we take LeNet-5 [28]
as an example to conduct a breaking down analysis about
the performance of on-chain CNN inference.

2.1 Convolutional Neural Network

Convolutional neural network (CNN) is a kind of DNN,
which is widely applied in image recognition and classifica-
tion [29], [30], [31]. As shown in Fig. 1, CNN architecture
contains three types of layers: convolutional layer, pooling
layer, and fully-connected layer. The input and output of
each layer are called feature maps [32], [33]. The simple
introduction of each kind of layer is as follows:

� The convolutional layer uses some weights (convolu-
tional kernel) to perform enormous repetitive convo-
lution operations to its input feature map. This layer
extracts the high-level features of the input feature
map. Convolution operations account for more than
90% of CNN computations which are also massive.

� The pooling layer usually appears after the convolu-
tional layer. The pooling layer is responsible for
reducing the size of input feature map to decrease
the computational power required to process the
image.

� The fully-connected layer multiplies its input feature
map by a weight matrix and then adds a bias vector.
This layer is used for learning non-linear combina-
tions of the high-level features as represented by the
output of the convolutional layer.

It is widely known that a well-trained CNN usually has a
large number of weights [34], for example, VGG-16 has 130
million weights [35]. Using such CNNs to conduct image
recognition task requires high memory space (16GB). The
CNNs are getting explosively deeper (i.e., more layers) and
wider (i.e., more parameters per layer) for higher modeling
capacities. The number of weights can be increased rapidly
such as the ViT network [36] with about 2,000 million
weights presented in October 2020.

From the above preliminary explanation, we can obtain
three main observations about CNN computing. Firstly, the
size of feature maps is different before and after a layer’s
computing. In LeNet-5, the size of the feature map is
increased after Conv1, Conv2, and FC1, while decreased
after Pooling1, Pooling2, and FC2. Secondly, there are many
identical convolutions with each other in each convolution

layer in CNN. Thirdly, for a specific layer, the convolution
operations and weight fetching are data-independent, thus
fetching the next output channel’s weight can be executed
in advance when computing the current layer of CNN.

2.2 Problems of Off-Chain Computing

We give the typical BC-AI architecture in Fig. 2 to ease
understanding the problems of CNN computing off-chain.
The BC-AI architecture adopts on-chain weight storage and
off-chain inference.

In typical blockchains such as Ethereum, each smart con-
tract maintains a storage trie to record the CNN weights.
Each weight is stored as a leaf node in storage trie. Each leaf
node is stored in a key-value database as a single item [23].
Each variable is a leaf node in the storage trie, so the weights
will be recorded to the storage trie as leaf nodes. The storage
trie is a data structure logically living in RAM. When a
smart contract is invoked, the storage trie will be loaded
from the key-value database (in hard disk) to RAM.

Although there are some researches ongoing to deploy
optimizations on hardware accelerator to execute smart con-
tract off-chain, the approaches cannot match the bytecode
execution mode and need rewriting a large number of smart
contracts by native code [17]. In addition, the CNN weights
have to be downloaded from the database in RAM as usual
by invoking the corresponding smart contract [37]. As shown
in Fig. 2, weight fetching will invoke the get() function (�1 )
and the function is compiled down to more than 50 instruc-
tions, including SLOAD and other instructions for reading
the weights from the database (�2 ). Then the weights are
returned to the off-chain platforms (�3 ). Note that the
weights have to be fetched by EVM instructions with a single
thread one by one because they are stored discontinuously
and independently with each other in database. Therefore,
this small-grained way of fetching weights creates a bottle-
neck, and it is more than thousands of times that a smart con-
tract with so many EVM instructions invokes get()

function and accesses the database to fetch weights. Such
invocations and access can cause high latency and make the
data fetching incredibly time-consuming.

We have deployed experiments before to observe fetch-
ing DNN data from the Ethereum blockchain to off-chain
platforms. For instance, regarding the LeNet-5, fetching
weight needs about 65,000 times invocation of database
interface, the latency is more than 3,000ms. For the AlexNet,

Fig. 1. LeNet-5 architecture of inference. Fig. 2. CNN Computing Process in Typical BC-AI.
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the same process invokes data reading interfaces about
62,000,000 times and the latency is up to 3,480,000ms. In
addition, CNN weight should be often updated along with
the changes in AI applications in practice, so the weight
downloading which takes so long time is frequent and inev-
itable. And even worse, all the data is computed outside the
trusted computing environment, which is insecure and vul-
nerable to be tampered with [38], and also deviates from
BC-AI original design intention about trusted computing.

Consequently, the time-consuming weight downloading
is one of the most critical performance bottlenecks in BC-AI
systems. With the fast increase of CNN model size, the
weight downloading time is gradually longer and longer.
Due to the single-thread design of EVM, the operations for
fetching weights are executed serially which also has a seri-
ous negative effect on EVM performance.

2.3 Scenarios of On-Chain CNN Computing

The typical BC-AI systems are applied in many applications
such as healthcare, model exchange, and smart transporta-
tion. But the previous works apply blockchain as a database
to store data. All the typical applications in BC-AI can be
supported by on-chain CNN computing. The typical appli-
cations in BC-AI includes but are not limited the digital
asset evaluation, distributed AI model trade, and distrib-
uted computation above privacy data.

Firstly, on-chain NN computing can support secure dis-
tributed computing to enable blockchain-based AI model
trade like Algorithmia DanKu.2 The smart contract can be
used for storing, executing, and validating the AI models.
The smart contract-based model trade is more reliable and
secure. Secondly, the on-chain NN computing can achieve
trusted distributed computation above medical privacy
data, the computation is performed in smart contract and
achieves consensus of results among multi parts [39].
Besides, the traditional application such as UBER can also
be deployed in on-chain computing environment. The driv-
ers upload the driving data to blockchain, the smart contract
can pay the drivers according to the drivers’ behaviors
based on trained model.

Previous work also considers that encoding the trained
neural network inside a zkSNARK circuit to protect data
security and computation security.3 However, such method
requires complex circuit experiences and preliminaries. The
on-chain NN computing can be implemented by human-
friendly programming languages and achieves the same
effect as the circuit-based method.

Though the typical BC-AI applications are trusted and
secure, the execution engine and environment of smart con-
tract are low-performance, which limits more applications
deployed on-chain. The proposed SmartVM provides a
smart contract virtual machine to support on-chain CNN
computing in high performance.

The CNN computation includes training and inference.
This paper focuses on the CNN inference, because in the tra-
ditional BC-AI systems, the trained model needs to be
deployed in blockchain. However, the on-chain inference
based on the deployed model is low-performance.

Therefore, from the application respect, we focus on CNN
inference, as the existing blockchain and smart contract
architecture can not support inference in high-performance.
The model training includes forward propagation and back
propagation, the performance bottleneck of training mainly
appeared in back propagation. Specifically, the gradient
and temporary data communication and storage bring high
latency. The training is usually performed on high-perfor-
mance platforms (e.g., cloud server), so the training is per-
formed offline and off-chain based on local data. Blockchain
is often used as a database and data source, when the block-
chain is applied in model training, the blockchain can pro-
tect data from tampering, but can not improve training
accuracy. Besides, the training mainly focuses on the net-
work architecture, Big Data movement, and model accu-
racy. But the SmartVM is designed to support high-
performance on-chain CNN computing through architec-
tural design. In the future, the SmartVM can support train-
ing through communication optimization for Big Data.
Therefore, we focus on the inference, and the training is out
of the scope of our work.

2.4 Limitations and Challenges of On-Chain
Computing

The traditional process of on-chain inference in detail sum-
marized is shown in Fig. 3. The LeNet-5 neural network
model is programmed by high-level contract-oriented lan-
guage (e.g., Solidity), which can be compiled down to byte-
code. The bytecode is executed in EVM interpreter, and the
temporary data is stored in EVM Stack and EVM Memory.
The LeNet-5 weights are stored in key-value database as
described in Section 2.2. Before bytecode execution, the
weights are organized as a trie and loaded into EVM Stor-
age and each weight is stored as a node leaf of this trie. Stor-
age is a specific block of physical RAM. When LeNet-5
inference, the Storage needs to be also accessed more than
thousands of times. We pick EVM as our on-chain comput-
ing baseline, because the EVM is the most widely used con-
tract execution environment. The original EVM is designed
for simple financial functions and normal operations, which
is not fit the CNN inference. Based on these preliminaries,
we explain the limitations of on-chain CNN inference and
central challenges of SmartVM design as follows:

First, since the EVM is Turing-complete, which means its
smart contracts can solve any type of problem and perform

2. https://github.com/algorithmiaio/danku
3. https://github.com/ethereum/research/issues/3

Fig. 3. On-chain LeNet-5 inference process.
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any logical step of a computational function at least hypo-
thetically [40], we consider running CNN on-chain can be
realized both theoretically and technologically. However,
existing EVM architecture has no instructions to support
highly efficient CNN inference. EVM instruction set is
designed for general computing operations rather than the
complex CNN computing operations, which cannot be
described by a short number of instructions. As a result, as
aforementioned, tens of millions of redundant instructions
are generated and will affect smart contract performance
according to our profiling. For instance, as shown in Figs. 4a
and 4b, more instructions bring higher latency in the same
kind of layer. And nearly 40% time in each LeNet-5 layer is
used for fetching weights (SLOAD and MLOAD). Besides, the
large number of instructions are limited by the gas mecha-
nism of Ethereum [41].Moreover, although the interpretation
mechanism of EVM can be optimized indirectly such as
EVMONE,4 by precomputing the gas cost and stack require-
ments of the instructions, the performance improvements for
complex computations are not sufficient and enough. There-
fore, the first challenge of on-chain inference is to encounter
the contradiction between CNN-oriented operator instruc-
tion lacking and general original instruction explosion in the
previous smart contract execution virtualmachine.

Second, EVM lacks memory management mechanism for
processing the massive input data and immediate results
during CNN computing. Specifically, the useless data in
EVM memory is never freed, which causes high memory
footprint and can not perform DNN solidly. For example,
EVM always places new objects at the free EVM Memory
pointer and these occupations will always be resident in the
memory not be released .5 In practice, the traditional mem-
ory management strategies like rolling array cannot satisfy
the requirements of on-chain CNN inference. The tradi-
tional strategies are high-level solutions, and the compiled
results are static. However, the memory required during
CNN inference is variable and dynamic. Moreover, the
memory management needs not only space compression or
multiplexing, but also needs space scheduling, address con-
version, and so on. The complex functions can not be real-
ized by high-level solutions such as rolling array.

Although we can use MSTORE to malloc new EVM Mem-
ory space, it may cause unexpected errors (e.g., EVM Mem-
ory overlap) [42]. Even the LeNet-5 on-chain inference needs
up to 90MB RAM (see Fig. 4c), but EVMmemory supporting
common smart contracts (e.g., ERC20) to perform is usually
about one megabyte. The larger-scale neural networks can

directly cause memory overflow exceptions. Furthermore,
the number of CNN weight has been increased from 60,000
to 2,000,000,000 over the last 10 years. Running CNN
requires more and more memory. Consequently, on-chain
inference comes at a heavymemory burden challenge.

Third, in traditional EVM execution mechanism design
such as single-thread, all the operations on EVM execute in
serial mode. This implies that the CNN operation has to
wait for the end of the weight fetching before it can be calcu-
lated. In fact, the structural feature of CNN is actually pro-
vided with high parallelism, the serial execution mode will
obviously slow down inference performance. Moreover, the
existing EVM lacks heterogeneous accelerating platforms
such as GPUs supporting technology. It is worth noting that
CNN inference requires yet data loading from EVM Storage
or key-value database to EVM Stack, which needs thou-
sands of times of accessing physical RAM memory to read
data. Therefore, these time-consuming serial processes and
technical defects strangle CNN computing on-chain. In
summary, fast on-chain CNN computing is in desperate
need of fine-grained architecture level design and corre-
sponding mechanism support.

3 BASIC DESIGN OF SMARTVM

The key to applying SmartVM to achieve fast on-chain DNN
computations is to efficiently interpret and execute the
smart contract utilized for DNN computing. As mentioned
before, on-chain CNN computing is challenging, consider-
ing the systemic limitations of operator instruction, memory
footprint, and execution mechanism. Therefore, in this sec-
tion, we propose SmartVM, to our best knowledge, the first
architectural support technology aiming at speeding up on-
chain CNN inference. Here, we first elaborate on the archi-
tecture overview of SmartVM. Then, we design the novel
CNN-oriented specific instruction set for performing CNN
operations in SmartVM. Next, we propose the dynamic
memory space mechanism to reduce memory footprint dur-
ing smart contract runtime. In the end, we present the opti-
mization mechanism of block-based weight prefetching and
computing towards making better use of smart contract par-
allel executing potentials, in order to further improve on-
chain computing efficiency.

3.1 Architecture Overview

The overview of SmartVM is shown in Fig. 5. The
SmartVM consists of the core, hardware interface, and
data segment. Besides, SmartVMprovides an extendedCNN-
oriented instruction set. The core is used for interpreting and
dispatching instruction during CNN inference. The runtime
data of inference is stored in the data segment.

A typical CNN network can be divided into two parts:
CNN architecture and CNN weights (e.g., convolution ker-
nel). The CNN architecture describes the number and the
order of each kind of layer. The CNN architecture is imple-
mented by a high-level smart contract, which is usually pro-
grammed by Turing-complete languages (e.g., Solidity). In
SmartVM, the high-level smart contract will be compiled
down to bytecode before inference. There are two types of
instructions in the bytecode: the proposed CNN-oriented
instruction and basic instruction (e.g., ADD, MUL, etc.). The

Fig. 4. The performance of LeNet-5 on-chain inference.

4. https://github.com/ethereum/evmone
5. https://docs.soliditylang.org/en/latest/
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CNN weights are stored in the blockchain’s persistent key-
value database. At contract runtime, the CNN weights will
be loaded into memory as a cache. In SmartVM, weight
fetching time can be reduced by decreasing the times of
reading cache by the proposed block-based weight storage
method.

The core of SmartVM has three parts: bytecode inter-
preter, instruction validator, and computing platform dis-
patcher. The bytecode interpreter fetches the instruction
from a given bytecode by the program counter. Before exe-
cution, the instruction validator checks the execution con-
text (e.g., stack overflow). Once the context satisfies the
condition of the instruction execution, the interpreter dis-
patches the instruction. The dispatching refers to jumping
to the corresponding native code segment that implements
the instruction.

The computing platform dispatcher can assign different
kinds of instructions to different hardware to enable hetero-
geneous computation: by default, in SmartVM, the CNN-
oriented instructions are assigned to GPU, while other
instructions are assigned to CPU. Furthermore, other hard-
ware (like FPGA) can be also supported through the shared
libraries. In SmartVM, we have implemented three types of
hardware interfaces to support the dispatcher transmitting
instructions to the target platform.

Temporary data during contract execution is stored in
the data segment. The Stack stores instruction operands,
the Memory stores complex type data (e.g., array), and
the Storage is used for storing CNN weights. According
to the characteristics of CNN computing (see Section 2.1),
in SmartVM, we design a dynamic memory management
method, which provides space multiplexing for feature
maps during CNN inference, to reduce the memory foot-
print by defining an elastic Buffer space in SmartVM
Memory.

In this section, the CNN is an example to show the design
of SmartVM. The SmartVM can also be extended to support
other kinds of DNN such as recurrent neural network
(RNN), which only needs to implement corresponding
instructions and operations. The SmartVM is designed as a
common architecture with general optimization methods.
The proposed instruction set can be extended through con-
figuration interfaces, and the storage scheme can also be
costumed according to the characteristics of DNN.

3.2 CNN-Oriented Instructions

In SmartVM, we divide CNN-oriented instructions into two
types: computational and data transfer instruction. CNN
computational operations should be described succinctly and
efficiently. The computational instruction encapsulates and
fuses common CNN operators. The data transfer instructions
support moving data from/to an area (such as SmartVM
Buffer, EVMMemory) to/from another area.

Computational instruction can describe mainly three
granular computation operations in CNN inference: a
whole CNN architecture, a specific layer in CNN (e.g.,
convolutional layer, pooling layer), and atomic opera-
tions (e.g., matrix multiplication). It is obvious that the
finer the granularity of a computational instruction, the
better description capability it is. In SmartVM, in partic-
ular, packaging a layer’s computation into one instruc-
tion can achieve relatively high computational efficiency.
Besides, the common usage operators in AI frameworks
such as BatchMatmul, Broadcast, and Transpose are all
can be extended to the proposed instruction set through
pre-defined interfaces.

The data transfer instructions are designed to support data
moving operations about the Buffer. When invoking a smart
contract for CNN inference, the input feature map data is
stored initially in Memory, then the data can be moved from
Memory to Buffer through the instructions. Once the whole
CNNnetwork inference is completed, the final output feature
map data which is stored in Buffer should be moved to Stack
as the return value of the invocation.

As shown in Table 1, we list some representative CNN-
oriented instructions. Each instruction has a mnemonic and
a unique hexadecimal opcode. Each instruction’s function is
given in the description column. For example, Conv_TPD
instruction is used for transposed convolutional computa-
tion. The stack required column defines the number of stack
items that the instruction requires. For example, Conv

requires eight items to store the arguments of convolutional
computation, such as input channel number. During instruc-
tion execution, once the reminder stack space is less than
required, the on-chain CNN inference will be interrupted
and an exceptionwill be thrown.

Note that the SmartVM supports all the operations in
smart contract, including CNN-related and non CNN-
related. In SmartVM, the CNN inference can be realized by

Fig. 5. SmartVM architecture overview.
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only normal instructions, only CNN-oriented instructions,
or the both. The CNN-oriented instructions are compiled to
high-performance bytecode, the SmartVM will not compul-
sorily change the developers’ preference, which also means
that the SmartVM will not bother developers. The proposed
CNN-oriented instructions coexist with native EVM instruc-
tion set in SmartVM compiler. The developers can program
CNN programs both with and without CNN-oriented
instructions. All the operations in user’s smart contract can
be recognized by SmartVM’s compiler. When compiling the
smart contract, the CNN-related operations in SmartVM are
compiled down to high-performance bytecode. The high-
performance bytecode includes the CNN-oriented instruc-
tions. And the normal operations are compiled down to
normal bytecode (non high-performance). In conclusion,
the SmartVM can support any kind of operators.

As shown in Fig. 6, we give an example to show the
usage and workflow of proposed CNN-oriented instruc-
tions. A LeNet-5 architecture can be programmed by
CNN-oriented instructions through the in-line assembly
programming method in a high-level based smart contract.
Then the smart contract is compiled down to bytecode. For
example, Conv(...) represents the first convolutional
layer, and it is compiled down to eight PUSH operations for
pushing arguments to Stack, and one Conv operation for
convolutional computation. In smart contract runtime, the
parameters of the first convolutional layer are pushed onto
Stack. In the native code wise, Conv instruction execution
can be divided into five steps: 1) pop the arguments from
Stack 2) fetch input feature map data from Buffer 3) fetch
weights from Storage 4) perform convolutional computation
5) write back the output featuremap back to Buffer.

In SmartVM design, from high-level smart contract to
bytecode, a SmartVM compiler is provided for generating
the CNN-oriented instructions. The compiler keeps an
instruction table, which is the same as instruction set of

TABLE 1
CNN-Oriented Instructions in SmartVM

Type Name Opcode Description Stack required (Key arguments)

Computation CONV_SING 0x21 Implement single channel convolution 8 (Kernel, Output channel, Stride)
(Convolution) CONV_MUL 0x22 Implement multi-channel convolution 8 (Kernel, Output channel, Stride)

CONV_3D 0x23 Implement 3D convolution 8 (Kernel, Output channel, Stride)
CONV_TPD 0x24 Implement transposed convolution 8 (Kernel, Output channel, Stride)

(Pooling) POOL_MAX 0x25 Implement max pooling 5 (Stride, Input channel)
POOL_AVG 0x26 Implement average pooling 5 (Stride, Input channel)
POOL_OL 0x27 Implement overlapping pooling 5 (Stride, Input channel)

(Full connected) FULL_CON 0x28 Implement full connected layer 5 (Input channel, Output channel)
MAT_MUL 0x29 Implement matmul 2 (Addresses of two matrix)

(Active) ACT_SM0 0x2a Implement softmax function 1 (Value)
ACT_SM1 0x2b Implement Sigmoid function 1 (Value)
ACT_RL 0x2c Implement ReLU function 1 (Value)
ACT_TANH 0x2d Implement Tanh function 1 (Value)

(Buffer) BUF_SCL0 0x2e Increase Buffer’s data with specific times 1 (Specific times)
BUF_SCL1 0x2f Reduce Buffer’s data with specific times 1 (Specific times)
BUF_BIAS 0x30 Add Buffer’s data and bias 1 (Base address of bias)

Data transfer MTOB 0x31 Transfer data fromMemory to Buffer 2 (Data offset)
BTOM 0x32 Transfer data from Buffer to Memory 2 (Data offset)
BTOS0 0x33 Transfer data from Buffer to Stack 2 (Data offset, Size)
BTOS1 0x34 Transfer data from Buffer to Storage 2 (Data offset, Size)

(Buffer set) BUF_CLS 0x35 Clean Buffer’s data 1 (Clean number)
BUF_FIL 0x36 Fill Buffer’s data with specific data 1 (Specific filled data)
BUF_INIT 0x37 Initial Buffer with specific size 1 (Specific size)
BUF_ALLO 0x38 Allocate specific size to Buffer 1 (Specific size)
BUF_FREE 0x39 Free specific size from Buffer 1 (Specific size)
BUF_COPY 0x3a Copy a same Buffer 2 (Start and end pointers)

Fig. 6. The workflow of CNN-oriented instructions.
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smart contract virtual machine. Once the instruction set
changes, the table should also be updated. As shown in
Fig. 7, the compiler compiles high-level smart contract
according to the instruction set. The source code is first
parsed to abstract syntax tree (AST) by lexical and syntax
analysis. Secondly, the AST is converted to Yul-based pro-
gram (Yul is an intermediate language that can be compiled
to bytecode for different backends). Then the Yul-based pro-
gram is compiled to low-level bytecode according to the
instruction table. For example, the code sstore(v, zero)

in Yul is compiled down to PUSH v, PUSH zero, SSTORE.
In the above steps, the exception handle part handles the
exceptions during compilation. In SmartVM, the table in
SmartVM compiler includes CNN-oriented instructions,
and the CNN operations in high-level language can be cor-
responding compiled down to high-performance bytecode,
while the normal compiler (e.g., Solc compiler) will give
poor-performance bytecode (because the table has no CNN-
oriented instructions).

3.3 Dynamic Memory Management Method

As aforementioned, although the EVMMemory can be used
for storing runtime data, it will never be released dynami-
cally during the contract execution which can cause a high
memory footprint. This implies that to store CNN input and
output feature maps, all the data are RAM-resident during
the on-chain inference. Therefore, in SmartVM, in order to
reduce the memory footprint, we propose a memory man-
agement method to provide dynamic memory allocation
and release function in accordance with the feature map
size of each CNN layer. As mentioned in Sec 2.3, the high-
level smart contract language provides no library functions
to manage memory in an automatic or manual manner. To
make up for the defect, we partition a block from the mem-
ory and define it named as Buffer to store feature maps for
each layer dynamically, and each Buffer item is set to 256
bits by default.

As shown in Fig. 8, we still take LeNet-5 inference as an
example to explain the corresponding design details in
SmartVM. The input feature map is stored in the partitioned
Buffer and its size is 1024 (1*32*32), so the total size of Buffer
at the present equals 1024. After the first convolutional layer
computations, the output feature map size becomes 3456
(6 � 24 � 24). The Buffer in consequence should be changed

to be bigger by memory allocation. Then, the output feature
map size becomes 864 (6 � 12 � 12) after the computation of
the first pooling layer, so the Buffer should be smaller by
space release. According to the size of the intermediate
results, we should dynamically change the corresponding
memory size to prevent exceptions caused by the continu-
ous growth of memory. In SmartVM, during CNN infer-
ence, the Buffer size upper and lower limits are decided by
the output feature map size. The proposed memory man-
agement has two main insights: first, SmartVM can manage
memory automatically and is compatible with all CNNs,
because the Buffer is elastic according to the size of feature
maps. Secondly, for some of the traditional high-level lan-
guages (e.g., C, C++), the developers may manage memory
manually, our automatic method eases the developers and
bring no extra burden to the developers. The pre-allocation
and remapping approach is implemented by append()

function, malloc() function, and free() function. Some
high-level solutions (e.g., rolling array) are not fit the CNN
inference, because the compiled results are static for the
memory space, which can not fit the dynamic space require-
ments in CNN inference.

3.4 CNN Weight Prefetching and Parallel
Computation

In CNN network, convolution computing can account for
about 90% of the total processing work [43], [44]. In order to
calculate convolution, each convolution operation should
fetch weight from RAM to multiply the feature map data.
This process will produce a large number of weight fetching
operations. In the previous smart contract execution envi-
ronment, the fetching process is in serial mode and so time-
consuming. Therefore, we propose a block-based weight
prefetching method in SmartVM to obtain more data once
time to reduce the fetching time for CNN convolution calcu-
lation. Furthermore, because convolution operations when
CNN inferences are repetitive and data-independent with
weight fetching at layer-wised, we also design a parallel
computing mechanism to conduct weight fetching and con-
volution calculation at the same, in order to overcome the
serial execution defect.

Block-Based Weight Fetching. Since reading data fast or
slowly depends on the storage and organization of data to a
certain extent, we first design how to store data reasonably.
The block-based weight storage method is designed to
reduce the number of reading data from physical memory,
thereby speeding up the fetching process. To ease

Fig. 7. The SmartVM compiler.

Fig. 8. The dynamic memory management method.
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understanding about SmartVM design and previous block-
chain storage structure, we take Ethereum as an example.

Before contract execution, the runtime EVM will load
four tries from the persistent key-value database (e.g.,
Level-DB) on the hard disk into physical memory. The four
tries are world state trie, receipt trie, transaction trie, and
storage trie and are responsible for describing account infor-
mation, transaction receipt, transaction information, and
contract-related data, respectively. The storage trie stores
the global variables of a smart contract, and each global var-
iable is a leaf node of the trie. The CNN weights in a smart
contract should be defined by global variables, so each
weight data is a leaf node in the storage trie. As a result,
when performing CNN inference within a smart contract,
especially in convolutional and fully-connected layer’s com-
putation, it needs more than thousands of times to read the
database to fetch weight data.

In SmartVM, we cluster and store weight data(e.g., a
convolutional kernel) as a block rather than a single
weight data in the leaf node of the storage trie (see Fig. 9).
These weight blocks are indexed by a unique identifier in
the corresponding smart contract data table in the data-
base. Note that the number and the size of the weight
block are not fixed and can be changed on demand. In a
convolutional layer, a weight block may represent a con-
volutional kernel, while in the fully-connected layer it
may represent a fully-connected matrix. For convolution
computing which needs the whole convolutional kernel,
SmartVM can fetch the convolutional kernel completely in
the form of a block, and reduce the number of data reading
thousands of times.

Parallel Computation. In the previous subsection, we
explain how we design a block-based storage approach and
enable it to process weight data fetching. Here, we further
extend our design to explore more parallelism.

In the existing contract runtime, the serial mode during
contract execution has limited complex computing poten-
tial, and will seriously degrade on-chain CNN inference
performance. We have observed that the computing time in
CNN inference is longer than the weight fetching time, and
these two process tasks are data-independent in fact. We
thus can perform fetching weight and CNN inference in the
same instant. We reorganize the weights fetching process
and the convolution computation of each channel in each
layer in the pipeline manner. In a convolutional layer, the

number of convolutional kernels equals the number of out-
put feature maps. Concretely, we can prefetch the next out-
put channel’s convolutional kernel weight data when
computing the CNN current output channel feature map.

As shown in Fig. 10, we define computing one single out-
put channel’s feature map time as Tc, and label fetching an
output channel’s convolutional kernel time as Tk. Tc and Tk

are not constant in different convolutional layers and differ-
ent CNNs, and normally, Tk is less than Tc in the convolu-
tional layer. To initial parameters of Tc and Tk, we record
the time for fetching the first output channel’s kernel and
the time for the first output channel’s convolutional compu-
tation. After that, we can calculate bTc=Tkc and define it as
N , implying the number of output channels’ convolutional
kernel weight that can be prefetched maximally when com-
puting convolution at the same time. When implementing
SmartVM, we utilize two threads to conduct the two tasks
in parallel. In this way, the weight fetching time can be cov-
ered by convolution computing time and thus further
improving CNN inference performance on SmartVM.

4 EVALUATION

To validate the design point of SmartVMand demonstrate its
performance benefits, we have deployed experiments to
build the BC-AI prototype system on the private Ethereum
blockchain at CPU and GPU platform, which performing
LeNet-5 over MNIST dataset, and AlexNet, ResNet18, and
MobileNet over ImageNet [45] dataset, respectively. Besides,
to prove the scalability of SmartVM, we perform experi-
ments on the RNN (Recurrent Neural Network). The RNN
used in this evaluation is LSTM (Long Short-Term Memory)
with 28 cells and 55,296weights. The objectives of the evalua-
tion are fourfold: (1) testing the performance improvement of
SmartVM compared with the offloading CNN weight data
and computations as native code paradigm; (2) testing
the performance improvement of SmartVM compared with
traditional smart contract architecture regarding CNN infer-
ence; (3) providing insights of SmartVM’s outperforming
its peers; and (4) studying the impact of SmartVM on the
original BC-AI system.

4.1 Experimental Setup

Hardware. We deploy eight servers equipped with Xeon E5-
2630 CPU (2.3GHz, 6 Cores) and 96GB memory to construct
a private Ethereum network. The servers are connected
with each other via a local area network by 1000Mb band-
width. The GPU we utilized is NVIDIA GeForce 2080Ti.

Fig. 9. The block-based weight storage.

Fig. 10. The weights prefetching and parallel computation model in Conv

instruction.

4108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:41:26 UTC from IEEE Xplore.  Restrictions apply. 



Metrics. We compare SmartVM with traditional off-chain
CNN inference in three aspects: inference latency, the RAM
footprint, and the code length. Most CNN applications
require low latency to achieve real-time inference with low
computing resource overhead.

Prototype. Most of the existing work provides system
model, but rarely provides source code (e.g., [22]). So we
use the on-chain storage and off-chain computation model
to represent existing works. The SmartVM baseline is off-
chain model and Ethereum Virtual Machine. The private
Ethereum network is implemented by Golang-based Ether-
eum (v1.7), and the smart contract execution environments
are Ethereum Virtual Machine (v1.7) and SmartVM. The
CNN smart contract is programmed by Solidity, and the
corresponding compiler is based on Solc (v0.5.1). The CNN
in native code is implemented by Golang (v1.14.2) and
PyTorch (v1.10.0).

Experimental Steps. We deploy experiments for CNN
inference on both off-chain and on-chain platforms. Per-
forming off-chain CNN inference we need (1) Download
CNN weights from Ethereum to the off-chain platform. (2)
Performing CNN computation by CPU and GPU at local.
Performing on-chain CNN inference we need (1) Fetching
CNN weights from Storage. (2) Performing CNN computa-
tion by CPU and GPU in the corresponding smart contract
(on-chain computing).

We give a fair comparison of performance between off-
chain CNN inference and inference in SmartVM. We also
analyze the reasons for the improvement of performance in
detail.

4.2 Code Length

In the evaluation, the code length is picked as a metric for
two reasons: the source code length is related to the conve-
nience for development, and the bytecode length is related
to the execution latency. Chen et al. point out that the code
length is a meaningful metric only when the ISA is flexible
enough to cover a broad range of applications in the target
domain [46]. Note that in our evaluation for the code length,
the comments are not included in our source file, and the
lines of comments are not counted.

In this subsection, we focus on the comparison results
between SmartVM instruction set and EVM instruction set
in two aspects: the source code length (i.e., the number of
Solidity smart contract source code) to show that the pro-
posed CNN-oriented instructions can facilitate the pro-
gramming, and the compiled bytecode to show that the
CNN-oriented instructions can reduce the number of exe-
cuted instructions in runtime in SmartVM. In the evaluation

for code length, in order to keep fair, the language, compiler
version, and other factors are kept the same. The experimen-
tal setup obeys the steps in [46]. Besides, we do not use any
external library in our evaluation. The code length of source
code refers to the line number (excluding blank lines) of
source code file (counted manually). The code length of
bytecode refers to the number of instructions (counted by
the compiler automatically).

Fig. 11a shows that compared with the EVM instruction
set, with the help of CNN-oriented instructions, program-
ming MobileNet only needs 110 lines of source code in
SmartVM, while this number is up to 600 in origin Solidity of
EVM. Fig. 11c shows the number of source code lines for each
kind of layer on average. Specifically, the SmartVM for pro-
gramming convolutional layer, pooling layer, and FC layer is
the same, while the EVMneeds 2� to 3� to program the three
layers because the computation logic is implemented only in
a single instruction, and the instruction can be invoked by
only one in-line assembly sentence (e.g., assembly{conv
(args)}).

As shown in Fig. 11b, compared with the origin Solidity
language which is EVM supported, SmartVM can reduce
the compiled bytecode numbers by 95.8% on average with
the proposed CNN-oriented instructions. Specifically, as
shown in Fig. 11d, the number of bytecode instructions for
the convolutional layer is eight, including Conv itself and
seven PUSH for its parameters, while the number of original
bytecode instructions is more than 840.

The off-chain Golang-based LSTM inference program is
nearly 120 lines, and the on-chain Solidity-based smart con-
tract needs nearly 110 lines. Fortunately, with the help of
CNN-oriented instructions in SmartVM, the code length of
the source code can be reduced to 27 lines. Furthermore, the
compiled bytecode length can be reduced from nearly 4900
to 170, compared with native Solidity.

The reduced code length comes from the architectural
design, the complex logic is achieved by the low-level
instructions in low layer rather than the high-level program
code. Though some high-level programming frameworks
and libraries can also reduce the source code length, the com-
pilation results are the same. The architectural and low-level
instruction set design can support shorter code length with
high-performance computation. Specifically, in fact, some-
times an implementation needs more lines of codes only due
to the lack of abstraction and encapsulations. However, in
SmartVM, the reduction of code length is mainly caused by
the new low-level instructions rather than high-level lan-
guage function library. A function library in high-level lan-
guage cannot improve the execution performance, because

Fig. 11. The result of code length.

LI ETAL.: SMARTVM: A SMARTCONTRACT VIRTUAL MACHINE FOR FASTON-CHAIN DNN COMPUTATIONS 4109

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:41:26 UTC from IEEE Xplore.  Restrictions apply. 



the compiled bytecode is the same as the bytecode without
library. By contrast, the CNN-oriented instruction not only
simply provides and encapsulates CNN operations (e.g.,
Conv, Pooling, etc.), but also includes the optimized compu-
tational and data fetchingmethod.

4.3 Latency

We consider the inference latency in three aspects: end-to-
end latency, weights fetching latency, and inference com-
puting latency (on CPU and GPU platform). The end-to-end
latency equals the summary of weights fetching latency and
inference computing latency. We run the experimental con-
figuration ten times to avoid random deviation and record

the average results. Results of the latency of the four CNN
inference are reported in Figs. 12, 13, 14, and 15.

4.3.1 End-to-End Latency

We product end-to-end latency to show the overall perfor-
mance of on-chain CNN inference in SmartVM. The end-to-
end latency is composed of weights fetching latency and
inference computational latency. We use this metric to
show the effectiveness of SmartVM design. The results are
given in each first subfigure from Figs. 12, 13, 14, and 15. As
the results show, compared with off-chain CNN inference,
SmartVM can significantly shorten the overall inference
time by 93.6% on average.

Fig. 12. Results for latency of LeNet-5 inference.

Fig. 13. Results for latency of AlexNet inference.

Fig. 14. Results for latency of ResNet-18 inference.
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The proposed weight prefetching and parallel computa-
tion technology also improve the overall performance of
SmartVM. The experimental results are given in Table 2.
The no pipeline latency is divided into weights fetching
latency and computing latency (the total latency equals
fetching latency adds computing latency). The pipelined
latency is the latency after pipelining the weights fetching
and computing. Results show that among the four net-
works, the pipelined latency is shorter than the total no
pipeline time in SmartVM. The results show that with pipe-
line technology, the end-to-end inference latency can be
reduced by 17.8%, 13.7%, 6.7%, and 14.2% on each network,
respectively.

In detail, the on-chain inferencemode reduces theweights
fetching latency by 93.7%, comparedwith off-chain inference
mode. For the four NNs, compared with on-chain inference
based on EVM, the CNN-oriented instructions reduce the
inference latency by 97.3%, the block-based weights fetching
can reduce the inference latency by 98.7%, andwith the pipe-
line computation, the latency can be reduced by 13.1% on
average. In addition, SmartVM keeps the pure computation
latency similar between the on-chain and off-chain inference
on CPU and GPU. As a result, the SmartVM can significantly
reduce overall latency by 93.6%.

For the overall latency of LSTM, the weights fetching time
is 4867ms and 10ms in the baseline and SmartVM (with

block-based weights fetching), respectively. The results for
computation time on CPU platform are 7.2ms and 7.4ms by
native code and SmartVM, respectively.

4.3.2 Weights Fetching Latency

We give the weights fetching performance evaluation to
show the effectiveness of block-based weights fetching tech-
nology. In the off-chain CNN inference, the weight fetching
refers to invoking smart contract functions to get back all
the weights. In the on-chain CNN inference (in SmartVM),
the weight fetching refers to invoking contract data trie
interface to get weights by CNN-oriented instructions. The
results are given in each second subfigure from Figs. 12, 13,
14, and 15. In each figure, the “Non block-based vs. Block-
based” is just the time for weight fetching.

As shown, compared with off-chain CNN inference,
SmartVM can significantly shorten the weight fetching time
by 93.7% on average. Especially, the weight fetching time
can be reduced by 98.6% at maximum and 89.6% at mini-
mum. The SmartVM with block-based weight fetching
experiment reports a positive time reduction with respect to
a solution that executes all CNN inferences on-chain with
the default non-block manner. As shown, the speedups
with respect to on-chain computing in SmartVM consis-
tently outperform the inference on EVM on-chain without
block-based weight fetching depending on the CNN and
dataset, SmartVM reduces the weight fetching time by up to
28� (from 57.3ms to 2ms) for LeNet-5 and by up to 210�
(from 68901ms to 328ms) for ResNet-18.

With the help of pipeline and parallel computation
method, as data is shown in Table 2, the inference latency is
reduced by 17.75%, 13.7%, 6.7%, and 14.2% on LeNet-5,
AlexNet, ResNet-18, MobileNet, respectively. The average
reduction rate is 13.1%, and the maximum reduction rate is
14.2% on MobileNet except for LeNet-5 (as the number of
LeNet-5 weights is too less). In general, the pipelined over-
all time is longer than non-pipelined computation time, as

Fig. 15. Results for latency of MobileNet inference.

TABLE 2
Pipeline Latency

Network

Latency (ms)

No pipeline Pipelined
Weights fetching Computing Total Total

LeNet 2 10 12 9.87
Alexnet 1228 4370.98 5598.98 4832.68
ResNet18 328 7037 7365 6871
MobileNet 677.7 2826.47 3504.17 3005.52
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in some fully-connected layers, the weights fetching time is
longer than the computation time. In SmartVM, the pro-
posed pipelined can increase the computation throughput.
With the non-pipelined method, the computation process
and weights fetching process share the same thread
together. With the pipelined method, the computation pro-
cess and weights fetching process run on the different
threads that are created by different Goroutines (concur-
rency model in Golang). Therefore, the computation time
can be reduced with the pipelined method. As a result, in
some DNNs with small-scale weights such as LeNet and
ResNet, the pipelined overall time is slightly shorter than
the pure computation time by 1% to 2%.

From the experimental results, compared with the off-
chain inference mode of the BC-AI system, the on-chain
inference mode can significantly reduce the weight down-
loading time, because the function invocation path is
shorter. In off-chain mode, downloading one single weight
value needs invoking get(), Sload(), getStorage(),
and getTrie() in order. In on-chain mode, fetching one
weight only needs invoking getStorage() and getTrie

(). Moreover, the off-chain mode needs data transmission
time from data residence to local platform.

4.3.3 Inference Computing Latency

We evaluate the CNN inference pure computing latency to
show the effectiveness of the proposed CNN-oriented
instructions and parallel computation technology. In the
off-chain CNN inference, the computation refers to per-
forming computation from the first layer to the final layer of
CNN. In the on-chain CNN inference (in SmartVM), the
computation refers to performing the corresponding com-
putation after weights fetching. For example, in Conv, the
computation latency is the time for convolutional computa-
tions after fetching convolutional kernels. The experimental
results on CPU and GPU platform are given in the third and
fourth subfigures from Figs. 12, 13, 14, and 15, respectively.

According to the computing latency results on CPU and
GPU platform, the SmartVM keeps the same latency
between native code and on-chain computation. On CPU
platform, the computing latency is nearly 10ms, 4.3s, 7s,
and 3s for LeNet, AlexNet, ResNet, and MobileNet, respec-
tively. On GPU platform, the computing latency is nearly
1ms, 52ms, 30ms, and 26.3ms for the four networks, respec-
tively. Among the four networks, which are close to the
time of CNN inference through the native code.

The SmartVM employs two technologies to reduce
inference computing time: SmartVM saves the instruction

interpretation time by proposed CNN-oriented instructions,
and the block-basedmethod facilitates covering weight fetch-
ing time by CNN computation. Firstly, as aforementioned in
the code length subsection, the CNN-oriented instructions
can reduce 10000 instructions execution in runtime, because
the logic of convolutional computation is implemented in the
proposed instructions rather than simply putting the original
instructions together. Secondly, in the block-based method,
the weights are organized by block, and each block is stored
in the leaf node of storage trie, while the traditional method
stores a single weight in the leaf node of storage trie. Invoking
getTrie() accesses the trie and returns the value of leave
node. So, in order to get all the weights, the getTrie() will
be invokedmany times (e.g., 34,848 times in the first convolu-
tional layer of AlexNet). In the block-based method, invoking
once getTrie() can return a weight block, which includes
many weights. Therefore, prefetching weights by blocks can
reduce the number of trie interface invoking (from 34,848 to
96), then the time for invoking trie interface can be decreased
by more than 80%. For example, for the large weight data
CNN such as AlexNet and ResNet-18, the speedup can be
184x and 210x improved by SmartVM, respectively. It is possi-
ble to cover fetching time by computation time in the block-
based method as the former is less than the latter. For exam-
ple, in the first convolutional layer of ResNet, fetchingweights
needs 11ms, while computation needs 400ms (see Fig. 14). In
fact, we observe that in the convolutional layers of four
CNNs, the convolutional computation latency can cover
weights fetching latency, while in the fully-connected layers,
the weights fetching time can cover fully-connected computa-
tion latency.

4.4 Memory Footprint

We product memory footprint evaluation to show the effec-
tiveness of the proposed dynamic memory management
method. We evaluate the physical memory footprint from
two aspects: 1) the comparison between the size of EVM
Memory and SmartVM Buffer in runtime to show the effi-
ciency of the dynamic memory management method, and 2)
the comparison between SmartVM and native code during
CNN inference to show that the proposed SmartVM can pro-
vide a similar performance compared with native code wise.
In our evaluation, the size of each item in Buffer is defined as
256 b, which equals the size of each item in EVMMemory.

The comparison results for EVM Memory and SmartVM
Buffer are given in Fig. 16. Results show that with the pro-
posed method, the memory footprint for storing feature
maps can be reduced by 84%, 90.8%, 94.3%, and 93.7% on

Fig. 16. RAM footprint comparison between SmartVM Buffer and EVM Memory.
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average in LeNet, AlexNet, ResNet18, and MobileNet infer-
ence, respectively. In LeNet-5, the peak memory used by
Buffer is only 4.2KB of a slice, while this number is more
than 2� in EVMMemory. In AlexNet, due to a large number
of weights, the memory used by EVM Memory is up to
nearly 160MB, while the maximummemory required is only
42MB by SmartVM Buffer. In ResNet18, results show that
the minimum and average RAM footprint is 25MB and
61MB in the EVMMemory, respectively. With the help of the
managementmethod in SmartVM, the averagememory foot-
print in Buffer can be reduced to only 3.5MB. In MobileNet,
the Buffer requires only less than 1MBmemory space to per-
form CNN inference, while the EVMMemory requires more
than 4MB space.

For the CNN with a larger number of weights, the effi-
ciency of dynamic memory management method is more
significant. For example, in AlexNet, the memory space can
be saved by more than 100MB. For the four CNNs, in
SmartVM Buffer, the highest memory used is occurred after
the first layer, because the feature map is the largest of the
other layers. In general, the size of EVM Memory is gradu-
ally increased because the feature maps will not be freed,
while the size of Buffer is decreased because the feature
map size is decreased due to the pooling layers.

The memory used results of SmartVM and native code
inference comparison is given in Fig. 17. Experimental results
show that SmartVM can keep the close latency with slightly
higher than native code (6% on average). There are three rea-
sons for the phenomenon: 1) except for trained weights, some
block validation-related information (e.g., hash value) has to
be stored. 2) In order to support heterogeneous computing,
some space for shared libraries (e.g., Cuda) is inevitable, and
some space for the interpretation in stack-based SmartVM is
required. 3) In order to ensure data consistency and reach con-
sensus accurately and quickly, float computation is not con-
sidered in EVM and SmartVM, because the results of float
computation are not always the same on a different kind of
hardware. In this case, all the runtime data (e.g., including
weights, feature maps) are stored as 256 b, while the native
code can pick different data width. In summary, the dynamic
memory management method can keep a similar memory
footprint between SmartVMand native code.

4.5 Discussion

In this subsection, we give the analysis of inference accuracy
and gas usage to illustrate that the SmartVM can be deployed
in intelligent applications and blockchain systems. Lastly,

we discuss the potentially optimization for storage space
in SmartVM.

4.5.1 Accuracy Discussion

The pre-trained model we used is the same between native
code and SmartVM, and the experimental results show that
the accuracy of image classification in native code and
SmartVM can be the same level: 99.98% in LeNet, 57.1% in
AlexNet, 69.6% in ResNet18, and 70.9% in MobileNet.

In fact, picking a power of two as the scaling factor also
can be implemented in SmartVM, and picking a power of
two as the scaling factor is a kind of NN compression and
quantization methods such as ESB [47] and TSQ [48]. The
quantizationmethods can further improve the inference per-
formance. The proposed SmartVM focuses on the inference
performancewithout any accuracy loss. However, themodel
compression and quantization method leads to accuracy
loss. Therefore, we pick 1,000 or 10,000 as the scaling factor.
Besides, in order to ensure the precision of the computational
results and make numerically more stable on different hard-
ware, both the EVM and SmartVM can not support opera-
tions of Float type data, so we convert the type of CNN
weights from Float to Int by multiplying 1,000 or 10,000.
Furthermore, smart contract are computed across different
platform and machines, using Int type data for computation
can keep a cross platform consistency of results.

4.5.2 Gas Usage Discussion

Gas is the virtual unit used in Ethereum to measure the
computational and storage resources required to perform
certain actions on the Ethereum [49]. For example, ADD
instruction costs 2 units of gas, and MUL instruction costs 3
units. We give the on-chain CNN inference gas consump-
tion to prove that the computation amount of inference in
SmartVM can be accepted not only in private blockchain
but also in public blockchain. We take LeNet-5 as an exam-
ple, the gas usage during on-chain inference in SmartVM is
listed in Table 3. In the three convolutional layers, the
results of gas usage are 617556, 222913, and 61146, respec-
tively. In the two pooling layers, the results are 911384 and
208038. And in the two fully-connected layers, the results
are 61359 and 35047. Note that the computation in Conv1 is
larger than in Pool1, but the gas usage is opposite since
Pool1 needs to read from EVM Memory more times than
Conv1. The gas usage of reading EVM Memory is larger
than computation.

Fig. 17. RAM footprint comparison between SmartVM and native code.
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In fact, the gas usage can be tolerated in the public Ether-
eum, because the gas usage in many real blocks is bigger
than or similar to the gas usage in the on-chain LeNet-5
inference. Such blocks are also listed in Table 3, the data is
fetched from Etherscan.6

The gas cost for the proposed CNN-oriented instructions
references the Ethereum design. For example, the gas cost
for reading Buffer is similar to the reading Memory because
the resources consumption is the same. And the gas cost for
convolution instruction is generated dynamically according
to the computing amount.

4.5.3 Storage Space Discussion

The SmartVM currently focuses on the latency, program-
ming, and gas usage performance during on-chain CNN
inference. The blockchain’s default storage mechanism,
which not only stores original data, but also stores extra data
for validation. Such storage mechanism brings a heavy stor-
age burden for blockchain. For example, the weights file size
is up to several hundreds of MB, which brings high require-
ments of distributed storage space, especially for embedded
devices. The traditional hash-based data summary needs
extra time to find the original off-chain data, so direct data
processing methods are needed for the blockchain without
data decompression and data decode. It is also difficult to
store the temporary data during on-chain CNN inference
due to frequent writing and reading operations. Potentially,
adopting direct data processing method and text compres-
sion technology such as TADOC [50], POCLib [51] and
Sequitur [52] is promising for storing the computational tem-
porary data to make the computationmore reliable.

In addition to on-chain CNN inference, the blockchain
also requires TB-level storage space on hard disk to store
the block and transaction data. The POCLib can also be con-
sidered to reduce the storage burden of the blockchain itself.
In terms of the Etherscan data, the data size in an Ethereum
Geth full node is up to 709.2GB in May 17, 2022. During the
past three months, the data size increased by about 1GB to
2GB every day. In this case, compressing the blockchain
data by some novel techniques such as POCLib is also
promising.

5 CONCLUSION

In this paper, we propose SmartVM, which provides archi-
tectural support for fast on-chain CNN inference, and

enables heterogeneous computing. We present CNN-ori-
ented instruction set to reduce the latency by decreasing the
number of instructions in bytecode during CNN on-chain
inference. We propose a memory management mechanism
to reduce the memory pressure through dynamically space
free and allocation according to the size of the feature map.
In addition, the weights are stored in the blockchain as
blocks, and we organize weights fetching with blocks and
computing in a parallel pipeline manner. Experimental
results highlight that the inference latency and memory
footprint are significantly reduced. Compared with the tra-
ditional off-chain computing, SmartVM can speedup the
overall execution by 70�, 16�, 11�, and 12� over Lenet-5,
Alexnet, Resnet-18, and MobileNet respectively. The mem-
ory footprint can be reduced by 84%, 90.8%, 94.3%, and
93.7% over the above four models while offering the same
level of accuracy. These results strongly show that SmartVM
can be used to promote DNN inference on-chain and be
promising to further boost BC-AI applications.
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