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ABSTRACT
Deep neural network (DNN) models have been widely deployed
on embedded and mobile devices in lots of application fields such
as health care, face recognition, driver assistance, etc. These appli-
cations usually require privacy or trusted computing protection.
However, diverse hardware resources, various transport protocols,
and limited computation and storage capacity make it challenging
for traditional embedded systems to provide complex security pro-
tection mechanism oriented DNN models. To meet the challenges,
we propose Trusted-DNN, a TrustZone-based adaptive isolation
strategy for DNNmodels.We first design a normal pattern to exploit
TrustZone technology to provide overall protection for running
DNNs. To deploy arbitrary DNN models into TrustZone, we then
develop a dynamic model partition method, which makes our strat-
egy easily adaptive to various DNN models and devices. Finally,
we employ several optimization techniques to reduce the inference
latency of Trusted-DNN models. We perform AlexNet on OP-TEE,
which is a TrustZone-based secure operating system, based on a
Raspberry Pi 3B+ board. The extensive experimental results high-
light that the optimized Trusted-DNN can reduce memory footprint
by up to 98% compared with the ordinary program and Trusted-
DNN only increase inference latency by 22.8%. Our code is available
at https://gitee.com/PaintZero/alexnet-tee.

CCS CONCEPTS
• Security and privacy→ Embedded systems security; Hardware-
based security protocols; Trusted computing; •Computingmethod-
ologies → Neural networks.
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1 INTRODUCTION
Deep neural networks (DNNs) have been widely applied in various
mobile or embedded applications to accomplish inference tasks,
such as object detection and recognition, health care, speech recog-
nition and so on[10]. Many of these applications contain sensitive
data that require security or privacy protection. For example, spite-
ful attackers may steal users’ privacy input data contained in a
medical device, or attackers may manipulate the inference result
of a DNN model on cars to trigger traffic crashes. However, with
limited computation and storage capacity, the embedded or mobile
devices cannot effectively utilize complex security algorithms to
ensure the security of DNN models.

Hardware-based trusted execution environments (TEEs), such
as ARM TrustZone[1], are considered as a promising solution for
embedded security issues. TrustZone can create a secure hardware-
isolated world from the normal world. Programs executed in secure
world cannot be manipulated by any other software in normal
world, including the operating system. By deploying DNN models
into secure world of TrustZone, we can thoroughly protect both
the model privacy and integrity.

However, there are several challenges to implement DNN model
deployment into TEEs. First, the memory of TEEs usually are lim-
ited to maintain a small attack surface. For instance, the secure
world operating system we used, OP-TEE[8], has only 8 MB of
memory, which makes it hard to run large DNN models, such as
AlexNet with about 240 MB of parameters[7]. Second, there are lots
of differences in both the secure world memory space of different
devices and the structures of different models. It is hard for the
deploying methods to be competitive when facing new devices or
models. Third, normal world can only communicate with secure
world via shared memory, and the context switching between the
two worlds has high time costs. These factors make it difficult to
maintain desired performance of DNN models in TEE.

To this end, in this paper, we propose an adaptive isolation strat-
egy to provide effective security protection based on TrustZone for
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various DNN models and devices. Our experiment results prove the
effectiveness of the strategy. There are fourfold main contributions
as follows:

• We design an overall model protection strategy based on
TrustZone and encryption algorithms oriented the security
issues of embedded devices. The strategy protects the privacy
and integrity of user input data, DNN model weights and
the output data, and all computations in Trusted-DNN are
guaranteed.

• We propose a dynamic model partition method to meet the
memory challenge. This method fits the available memory
space by cutting the model weights into segments. The mem-
ory footprint of AlexNet through the method can be reduced
by up to 98%.

• We develop a special computation method for convolutional
layers in order to overcome the adaptivity challenge, so that
our partition method can be independent both on the DNN
models and the memory of devices.

• we employ several optimization techniques such as model
compression and strategy adjustments to further improve
Trusted-DNN performance. The inference latency of Trusted-
DNN is significantly reduced by 70% approximately after
using these optimization.

2 BACKGROUND AND RELATEDWORK
ARM TrustZone. TrustZone[1] is a kind of TEE technology and
another is Intel SGX. TrustZone mainly aims for embedded and
mobile devices and it has been widely utilized in these devices.
By extending a secure bus to processors, TrustZone can run two
independent execution environments, the normal world and secure
world, on the same processor through time division, and all mem-
ory and peripherals are divided between the two environments.
Software in normal world can only access to a subset of memory
and peripherals while secure world have full access including se-
cure world memory. These two environments are securely context
switched by TrustZone hardware mechanisms, thus programs exe-
cuted in secure world can be well protected.

Deep neural networks. DNN is a machine learning method
by simulating the structure and function of human brain. DNNs
have lots of neurons organized in layers and there are connec-
tions between layers. By multiplying all input neurons values by
weights and adding them to neurons in the next layer, the net-
work propagates forward and finally returns an inference result.
In a popular type of DNNs called convolution neural networks
(CNNs), there are two main kinds of layers, fully connected layers
and convolutional layers. Each neuron in a fully connected layer is
connected to all the neurons in the last layer and each connection
has a weight. While in convolutional layers, convolution kernels
are used to reduce the number of parameters. For an m×m size
input, X, and an n×n kernel, K, the output can be calculated by
the formula: zu,v =

∑n−1
i=0

∑n−1
j=0 xu+i,v+j × ki, j + b (0 ≤ u,v ≤

m − n + 1, no paddinд, strike = 1).
Related work. There have been efforts to protect DNN models

based on TEE. VanNostrand et al.[13] try solving the memory-
limited challenge with simple DNN-layer-based partition. However,
their partition methods heavily depend on the structure of the

model and they did NOT experiment on real devices. Tramèr et
al.[12] outsources all linear layers in DNNs to an untrusted GPU
and check the results in TEE by Freivalds’ algorithm[2] so that the
integrity or privacy are guaranteed. And Gangal et al.[3] combine
TrustZone with Intel SGX which has more computing resources to
get better performance. However, these methods are specifically
designed for Intel SGX on cloud servers rather than embedded
devices, and they all require additional hardware devices, which
enlarges the attack surface of TEE.

3 THE PROPOSED STRATEGY
3.1 Threaten model
In this paper, we focus on a pre-trained DNN inference model de-
ployed on an untrusted device. We assume that adversaries on the
device has full control authority over the rich operating system and
total access to the device’s cache, memory and storage. One of the
goals of adversaries is to steal the model’s input and output data
which contains users’ privacy information. Another is to steal the
weight data of a proprietary pre-trained model. Moreover, adver-
saries will try modifying data or computing results to give users
wrong inference results.

Meanwhile, we also assume that there is a trusted execution
environment supported by TrustZone on the device, which is called
secure world. All the data and code in secure world won’t be ac-
cessed or affected by any software in normal world. However, if
any data leave secure world without encryption, they’ll be exposed
to adversaries at once. To provide a realistic context, we considered
an existing secure world operating system, OP-TEE[8].

Our strategy aims to use such a trusted environment like OP-
TEE to provide the DNN model with thorough protection including
preventing adversaries from stealing input, output or weight data,
and also from manipulating any computing value or code of the
DNN model. To simplify our design, we reasonably assume that the
DNN model provider has deployed the model onto the device in a
secure way, and the model users have secure approaches to collect
and process the input data. In short, our strategy’s protection works
from the input data’s arrival until the output result leaves TEE.

3.2 Overall model protection strategy
According to our threaten model above, there are four main parts
that need protecting in DNN: model code, input/output data, and
weight data. In this subsection, we propose an overall model pro-
tection strategy to protect all these parts together.

Firstly, the DNN model code is encapsulated as a trusted applica-
tion (TA) running in secure world. TAs will be signed and optionally
encrypted with the RSA key from the build of the original OP-TEE
core blob[8]. All signature and encryption operations are finished
before TAs are installed on the device. When loading a TA, OP-TEE
will check the signature and load it only if it passes the verification,
which avoids adversaries’ modifying. TAs’ code will be executed
in isolation from all software in normal world. It is TrustZone’s
trusted firmware that ensures that no adversaries could access or
modify any data or code of TAs while executing.

Secondly, our strategy uses RSA encryption algorithm to pro-
tect a client’s input data and the output data. Before invoking the
Trusted-DNN application to make an inference, both the client
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Figure 1: DNN inference procedure under overall model pro-
tection strategy, using image recognition model as an in-
stance.

application and the TA generate a pair of RSA keys and send the
public keys to each other. The client utilizes his own private key
to sign the input data and utilizes TA’s public key to encrypt. The
cipher data will be later decrypted with TA’s private key and ver-
ified with client’s public key by TA. After the inference, there is
a symmetrical process when sending back the output data to the
client application.

Lastly, the weight data are protected by the secure storage mech-
anism provided by TrustZone. TrustZone has a multi-level key
management unit based on a hardware unique key (HUK) which
varies in different devices and can only be read by TEE. TEE will
utilize HUK to generate a trusted applicant storage key (TSK) for
every single TA. The DNN model’s weight file is encrypted with a
randomly generated AES key and the AES key will be encrypted
with TSK so that only the specific TA can read the file.

Base on TrustZone and encryption algorithm, Trusted-DNN
ensures that adversaries access no data stored in plain text and the
computation won’t give an inconsistent result. Thus, it can provide
a thorough protection for all parts in DNN models.

3.3 Dynamic model partition method
In this section, we propose a dynamic model partition method
which is independent of the structure of DNN models to address
the memory-limited issue in TrustZone.

In fact, it’s a pretty common phenomenon of shortage of mem-
ory resource in computer science. Modern computers usually use
multi-level storage and memory paging to conquer it. So when it
comes to TEE, we naturally try alleviating the shortage of secure
world memory by utilizing secondary storage with much larger
space, such as flash or disk. However, there are still problems when
implementing this. First, operations on files in secure world are not
as flexible as those in normal world. OP-TEE maintains a hash tree
to handle data encryption and decryption of a secure storage file,
but the tree itself takes lots of secure world memory space, which
makes OP-TEE unable to handle files larger than 2 MB. Second,
there is a time overhead to decrypt the secure storage files. We’ll
have to try to read the files as infrequently as possible to reduce
the loss of performance.

For the first problem mentioned above, we partition the en-
crypted weight file into certain-size segments and the size can be
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Figure 2: The first two steps of convolution in the dynamic
model partitionmethod. (3×3 input feature map, 3×3 weight
kernel, padding = 1 and stroke = 1)

adjusted to meet the memory limitation before each run. At one
time, only one segment will be loaded into a memory buffer of
the same size. And the buffer changes its content when weight
parameters in another segment are needed during the computation.

Meanwhile, for the second problem, we developed a special
calculation method of convolutional layers in DNN to make it
possible that we can complete an inference by traversing the weight
file only once from front to back.

Instead of computing with a convolution kernel, we separately
calculate all results related to one parameter in a convolution kernel
and accumulate the results to the corresponding position in the
output feature map one by one. Figure 2 demonstrates how our
method works during a two-dimension convolution. As for the full
connected layers and biases, the computation of parameters has
been already separated. Thus, by means of this convolution method,
we can utilize all weight parameters one by one and no parameters
need a twice visiting. Benefiting from this, the file segments can be
loaded only once by turn and we don’t need a complex file map to
handle them. Besides, the method has the same time complexity as
the original convolution method when computing with only CPUs.

By combining dynamic model partition method with the overall
model protection strategy, we develop an adaptive isolation strat-
egy, which enables us to load any DNN model into TEE. And the
strategy can make full use of the available memory space by prop-
erly adjusting the parameter buffer size to improve the computing
performance. In other words, the strategy has very good adaptivity
for both various DNN models and devices.

4 PERFORMANCE OPTIMIZATION
DNN models under the adaptive isolation strategy’s protection
usually take much longer time to make an inference than ordinary
models, which maybe unsatisfactory for the users. To address the
issue, in this section, we talk about two effective ways to enhance
the inference performance of Trusted-DNN models.

4.1 Model compression
Model compression has been widely utilized when porting DNN
models to embedded devices. There are different methods to com-
press DNN models, such as weights pruning, model quantification,
knowledge distillation and low-rank decomposition. These meth-
ods can significantly reduce the amounts of a DNNmodel’s weights
and computation, and thus have quite good effects on performance
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optimization. In this paper, we make a profound study on a binary
quantification compression method[4].

The parameters of DNN models are usually stored as 32-bit
floating point numbers. The quantification compression method
simply saves all non-negative numbers as 1 and the others as 0 so
that we can use just 1 bit to replace a 32-bit floating point number.
In this way, the whole weight file shrinks to 1/32 of its original size
and the time cost on encrypted file reading will be much less.

Model compression methods won’t affect the security of Trusted-
DNN. However, these methods usually have an influence on the
inference accuracy. Therefore, user may need to retrain the model
after quantification to fine tune the parameters for higher accuracy.

4.2 Strategy adjustments
As we have discussed in Section 3, our adaptive isolation strategy
provides an all-around protection. However, in some realistic sce-
narios, maybe not all parts of DNN models are concerned. In this
situation, we can adjust our strategy to exchange better perfor-
mance with the security of some unconcerned parts.

As a common situation, when utilizing an open model with
pre-trained weight parameters from the Internet, actually there
is no need for encryption of the weight file. At this time, we can
save all weights in a plain text file and optionally sign it with a
key generates by TEE. Without decryption operations before data
reading, the inference delay time can be greatly reduced.

Furthermore, there is a phenomenon that the intermediate values
generated from different layers in a DNN model expose different
amount of information. Gu et al.[5] analysed the input information
leakages of every layer in a DNN model, and discovered that the
front layers leak more information, while the back layers’ leak-
ages are much less. Similarly, Mo et al.[9] made a research on the
leakages related to training data to prevent membership inference
attacks, and their results show that the back layers contain most
of the effective information. The degree of correlation between
intermediate values and private data is called the sensitivity of the
layer. Based on the sensitivity analyse methods propose by Gu, Mo,
or others, we can partition a DNN model into two or more parts
according to each layer’s sensitivity. If one layer’s sensitivity is
larger than the threshold we set, it is deployed in secure world.
Otherwise, normal world will handle it.

These adjustments have nothing to do with the inference accu-
racy. However, there may be a small amount of information leakage
when utilizing the sensitivity based partition method and adver-
saries will be able to manipulate some computing processes to give
a misleading result. So these adjustments can only be used when
when the user confirms that he can bear the relevant security risks,
if not, model compression will probably be a better choice.

5 EXPERIMENTAL EVALUATION
5.1 Experiment setup
Hardware and operating systems. On the first, we port OP-TEE
3.8.0 onto a Raspberry Pi 3B+ board. The development board pro-
vides us TrustZone hardware support and OP-TEE provides a secure
isolated execution environment based on TrustZone. Our board has
1 GB memory in total and 8 MB of it are the secure world memory
which can be used by TEE. For the normal world side, there is a

Linux 4.14 system on the board and it can use the whole memory
except for the secure part.

DNNmodel anddataset.We select a typical DNNmodel, AlexNet[7],
and make two programs in C for Linux and OP-TEE respectively.
Andwe utilized pre-trainedweights of AlexNet fromCaffe[6]. As for
the dataset, we choose Tiny ImageNet, a subset from ImageNet[11],
which has 200 categories.

Evaluationmetrics.We use the following three metrics to eval-
uate the proposed strategy and its improvements.

- I/O time: time spent on decrypting and loading weight files.
- Computing time: time spent on other operations, obtained
by subtracting the I/O time from the total delay time.

- RAM usage: minimum size of memory space required to
run the program.

It needs to be claimed that our strategy itself does NOT harm
the models’ accuracy. Each calculation process in secure world
should have the same results with normal world, unless there are
programming mistakes. Specially, when optimizing with model
compression, the accuracy depends on the compression method,
which is not a main topic of this article. Therefore, we exclude
accuracy from our evaluation metrics.

5.2 Performance of unoptimized Trusted-DNN
We’ve implemented an ordinary AlexNet application running in
normal world, as well as a corresponding TA in OP-TEE. By running
these two program on the same device, we compare the metrics to
evaluate the performance of our strategy. In addition, to eliminate
irrelevant interference factors, we do NOT use multi-threading or
GPU heterogeneous computing methods.

Figure 3(a) indicates that the Trusted-DNN model takes much
longer delay time to make an inference than the ordinary model.
The total delay time of the Trusted-DNN model depends on the
parameter buffer size. The smaller the buffer is, the longer delay
time our strategy takes.

Under the best conditions we can achieve, the latency of Trusted-
DNN is about 4.7 times more than ordinary programs. The comput-
ing time of the Trusted-DNN model has been very close to that of
the ordinary program and it keeps stable, while the I/O time is much
longer and it increases sharply as the buffer size decreases. This
phenomenon is caused by a large number of decryption operations
when reading weight files.

As for the memory, Figure 3(b) shows that our strategy can
significantly reduce the RAM usage to less than 2% by means of
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Figure 3: Inference performance comparison of AlexNet in
different environments
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Figure 4: Inference performance comparison of AlexNet in secure world optimized by different methods

the dynamic model partition method. By the way, this method can
also be utilized in some memory-limited scenarios in normal world
to optimize ordinary DNN models.

5.3 Results after optimization
Long I/O time leads to long inference time of the Trusted-DNN
model. To address this issue, we’ve proposed several optimization
methods in Section 4. We apply three optimization methods in
AlexNet TAs and compare them with the ordinary program to
observe the optimization effects. For convenience, we use three
letters to represent these three methods:

Method W: saving all weight parameters in a plain text file.
Method Q: binary quantification of the weights.
Method D: partition based on the sensitivity of DNN layers.
Please note that we don’t analyse the layer sensitivity by our-

selves for method D, but refer to the research results of Gu et al.[5].
We compute the last three fully connected layers of AlexNet in
normal world and the others in secure world.

According to Figure 4(a), all the three methods can greatly re-
duce the delay time, especially the I/O time of the AlexNet trusted
application. Compared to the original Trusted-DNN model with an
1.5 MB buffer size, method W takes 30.9% delay time, and method Q
takes 22.8%, and 24.1% taken by method D. Furthermore, the delay
time after optimization has been much closer to that in normal
world. Compared with the ordinary program, the three methods
with three different sizes of parameter buffer on average take 53.02%
more delay time and at least 29.84% delay time overhead is taken
when utilizing method Q with a 1.5 MB buffer. As for the RAM
usages, the three methods won’t affect the dynamic partition in our
strategy, so the RAM usages still depend on the buffer size, while the
difference between different optimization methods is unapparent.

After optimization, the performance of Trusted-DNN models
becomes close to ordinary models, which allows us to provide DNN
models TrustZone-based protection at a low cost.

6 CONCLUSION
We designed an adaptive isolation strategy isolation strategy based
on TrustZone oriented DNNs, which is adaptive for various models
or devices. We optimized the strategy respectively by binary quan-
tificationmethod, saving weights in plain text, and sensitivity-based
partition. Experiment results indicate that after optimization, the
strategy can provide protection with at least only 29.84% inference
latency overhead compared to the ordinary AlexNet.
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