
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023 1773

TSC-VEE: A TrustZone-Based Smart Contract
Virtual Execution Environment

Zhaolong Jian , Ye Lu , Youyang Qiao , Yaozheng Fang , Xueshuo Xie , Dayi Yang , Zhiyuan Zhou ,
and Tao Li , Member, IEEE

Abstract—TrustZone as a trusted execution environment (TEE)
has been proven to preserve the confidentiality of blockchain
transactions supported by smart contracts. Despite some academic
effort, TrustZone can only support limited languages for now.
The lack of the corresponding execution environment for smart
contracts seriously hinders blockchain applications from directly
running on TrustZone. In this paper, we design the first virtual
execution environment named TSC-VEE for performing Solid-
ity smart contracts on TrustZone, to the best of our knowledge.
TSC-VEE can be decomposed into fourfold: (1) an instruction set
adapted to the isolation and world switching mechanism of Trust-
Zone. (2) a runtime memory management mechanism that provides
a pair of instructions with the corresponding processing mechanism

Manuscript received 19 September 2022; revised 24 March 2023; accepted
29 March 2023. Date of publication 6 April 2023; date of current version 8 May
2023. This work was supported in part by the CCF-AFSG Research Fund under
Grant CCF-AFSG RF20210031, in part by the CCF-Huawei Populus Grove
Fund under Grant CCF-HuaweiTC2022005, in part by the National Natural
Science Foundation under Grant 62002175, in part by the Open Project Fund of
State Key Laboratory of Computer Architecture, Institute of Computing Tech-
nology, Chinese Academy of Sciences under Grant CARCHB202016, and in part
by the Open Project Foundation of Information Security Evaluation Center of
Civil Aviation, Civil Aviation University of China under Grant ISECCA-202102.
Recommended for acceptance by Y. Yang. (Corresponding author: Ye Lu.)

Zhaolong Jian is with the College of Computer Science, Nankai University,
Tianjin 300350, China, also with the Key Laboratory of Blockchain and Cy-
berspace Governance of Zhejiang Province, Hangzhou 310058, China, and also
with the Tianjin Key Laboratory of Network and Data Science Technology,
Tianjin 300350, China (e-mail: jianzhaolong@mail.nankai.edu.cn).

Ye Lu is with the College of Computer Science, Nankai University, Tianjin
300350, China, also with the College of Cyber Science, Nankai University,
Tianjin 300350, China, also with the Institute of Systems and Networks, Nankai
University, Tianjin 300350, China, also with the State Key Laboratory of
Computer Architecture, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100045, China, and also with the Tianjin Key Laboratory
of Network and Data Science Technology, Tianjin 300350, China (e-mail:
luye@nankai.edu.cn).

Youyang Qiao and Yaozheng Fang are with the College of Computer Science,
Nankai University, Tianjin 300350, China, and also with the Tianjin Key
Laboratory of Network and Data Science Technology, Tianjin 300350, China
(e-mail: youyangqiao@mail.nankai.edu.cn; fyz@mail.nankai.edu.cn).

Xueshuo Xie is with the College of Computer Science, Nankai University,
Tianjin 300350, China, also with the College of Cyber Science, Nankai Univer-
sity, Tianjin 300350, China, also with the Key Laboratory of Blockchain and
Cyberspace Governance of Zhejiang Province, Hangzhou 310058, China, and
also with the Tianjin Key Laboratory of Network and Data Science Technology,
Tianjin 300350, China (e-mail: xueshuoxie@nankai.edu.cn).

Dayi Yang and Zhiyuan Zhou are with the Blockchain Platform Division,
Ant Group, Beijing 100000, China (e-mail: dayi.ydy@antgroup.com; wen-
zhang.zzy@antgroup.com).

Tao Li is with the College of Computer Science, Nankai University, Tianjin
300350, China, also with the College of Cyber Science, Nankai University,
Tianjin 300350, China, also with the State Key Laboratory of Computer Ar-
chitecture, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100045, China, and also with the Tianjin Key Laboratory of Network and
Data Science Technology, Tianjin 300350, China (e-mail: litao@nankai.edu.cn).

Digital Object Identifier 10.1109/TPDS.2023.3263882

to allocate and release the work memory. (3) a hybrid granularity
resource analysis algorithm which computes and records the value
of maximum stack height and static gas cost through bytecode pre-
execution, avoiding runtime overflow and invalid computations. (4)
a cross-isolation-environment prefetching approach that supports
loading and storing the storage data from the normal world into the
secure world on TrustZone before execution, thus avoiding switch-
ing the world state frequently at runtime. Extensive experimental
results show that TSC-VEE can perform smart contracts correctly
and efficiently on TrustZone. Compared with the most commonly
used Ethereum client—Geth, TSC-VEE achieves execution perfor-
mance improvements by 9.29×. We also implement the Ethereum
virtual machine—evmone on TrustZone. TSC-VEE can reduce the
latency by 12.63% with our optimization techniques, and decrease
the work memory footprint by 22.95% on average when executing
various scale contracts.

Index Terms—Blockchain, smart contract, solidity program
language, TrustZone, virtual execution environment.

I. INTRODUCTION

THE wide application of smart contracts has greatly boosted
the development of blockchain [1], [2]. Smart contracts are

essentially executable codes stored on the blockchain [2], [3].
Their characteristics such as transparency and immutability are a
double-edged sword. Smart contracts with these characteristics
enable blockchain to execute digital agreements between un-
trusted entities. They have been widely used as the application
carrier and serve many fields, such as the Internet of Things,
access control, and certificate audit [4], [5], [6]. However, smart
contracts stored publicly on blockchain ledgers expose the assets
they carry to serious risks. Due to confidentiality not being
guaranteed, the attacker can obtain the execution logic of smart
contracts through bytecode decompilation to create targeted
attacks. Such attacks have caused millions of dollars in economic
losses [7].

Recently, building confidential smart contracts with the as-
sistance of trusted execution environments (TEEs) has been a
general solution [8]. TEEs can provide a special environment
for trusted code execution through the isolation mechanism of
software and hardware, such as Intel SGX [9], ARM TrustZone,
AMD SME/SEV, RISC-V Keystone, and Penglai Enclave [10],
[11], [12], [13]. Though promising, migrating the mainstream
smart contracts to TEEs is a complex and difficult task, mainly
due to the incompatibility between the languages and envi-
ronments that the smart contracts usually rely on and those
provided by TEEs. The difficulty of such migration is especially
pronounced on TrustZone.

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1543-3207
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0009-0004-8100-5408
https://orcid.org/0000-0003-3244-0812
https://orcid.org/0000-0002-8245-8415
https://orcid.org/0009-0007-6130-6192
https://orcid.org/0000-0003-0258-484X
https://orcid.org/0000-0003-1697-8022
mailto:jianzhaolong@mail.nankai.edu.cn
mailto:luye@nankai.edu.cn
mailto:youyangqiao@mail.nankai.edu.cn
mailto:fyz@mail.nankai.edu.cn
mailto:xueshuoxie@nankai.edu.cn
mailto:dayi.ydy@antgroup.com
mailto:wenzhang.zzy@antgroup.com
mailto:wenzhang.zzy@antgroup.com
mailto:litao@nankai.edu.cn

1774 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

TrustZone is the widely supported TEE on ARM-based em-
bedded devices and cloud servers. Recently, embedded devices
have become an important carrier of smart contracts [14], [15].
Among them, more than 90% of the embedded devices are
equipped with ARM chips [16]. The ubiquity of TrustZone
makes it an attractive TEE base for preserving the confidentiality
of smart contracts [17], [18]. However, TrustZone commonly
uses OP-TEE1 as the security operating system, which limits the
secure resources to minimize the trusted computing base (TCB)
and reduce the attack surface to improve security. OP-TEE only
provides a C language runtime environment [19]. It implies that
TrustZone can only support trusted applications (TAs) written in
the limited language until now. The existing mainstream smart
contracts are programmed in domain-specific languages such as
Solidity [20]. There are more than 30 million smart contracts on
Ethereum. Most of these mainstream contracts are programmed
in Solidity [21], with an average of several hundred lines of
code per contract [22], [23]. These smart contracts cannot
be directly migrated and executed on TrustZone on account
of no corresponding execution environment support. Although
rewriting these smart contracts can help to convert them into
C language, the migration with about several billion lines of
code requires tens of thousands of man-year labor works, which
is obviously not a reasonable choice. Minimal support for the
virtual execution environment is necessary, although it brings a
limited increase in TCB [17].

In this paper, we design a new virtual execution environment
named TSC-VEE, for performing mainstream smart contracts
programmed in Solidity on TrustZone. TSC-VEE can be treated
as the computation core of confidential smart contracts. TSC-
VEE aims to provide a highly efficient execution environment
and optimization mechanisms for smart contract execution. To
do this, we should overcome several difficulties as follows.
First, the existing Solidity instruction set for smart contracts
does not match the program execution mode of TrustZone and
OP-TEE. The native instruction will cause world switches and
consume lots of time. The blockchain client is running on the rich
execution environment (REE) side (the normal world), while
the instruction execution is on the TEE side (the secure world).
Therefore, the common instruction for persistent data access
needs to penetrate the contract execution environment, switch
the world state, and be completed via the host application. This
time-consuming process makes data access across the world
very expensive. Second, the runtime data will be enlarged along
with smart contract execution, but TrustZone has very limited
memory resources. The smart contract programmed by Solidity
language has very rudimentary memory management currently,
lacking the memory recycling mechanism to release the work
memory at runtime [24]. The size of the secure memory available
for contract execution on TrustZone is usually limited to the
ten MB level [25]. When the secure memory cannot meet the
memory footprint of the execution, the smart contract will not
be executed solidly. Third, frequent resource detection during
contract execution slows down execution performance. The
instructions in the contract bytecode will be performed one by

1https://optee.readthedocs.io/en/latest/

one during execution. Before executing each instruction, it is
necessary to detect whether there is a stack overflow or out-of-
gas exception to ensure the correctness of contract execution.
With this detection method, the number of runtime detection
can be increased largely, and the detection latency can account
for 20% or even more of the instruction execution latency. Also,
this method involves meaningless instruction execution when an
exception occurs.

To the best of our knowledge, TSC-VEE is the first vir-
tual execution environment on TrustZone that can support
performing the Solidity smart contracts. In this paper, our con-
crete contributions can be summarized as follows:
� We design a specific instruction set for describing the

atomic operations of smart contracts according to the
mechanism of TrustZone and OP-TEE. The low-level in-
terpretation of the instruction set can support mainstream
contracts performing on TrustZone.

� We present a runtime memory management (RMM) mech-
anism with a pair of special instructions to allocate the work
memory from the operating system level, and dynamically
release them at runtime. RMM facilitates TSC-VEE to
reduce the memory footprint by 22.95% on average, with
only 0.97% additional latency overhead when performing
contracts of large size.

� We design a hybrid granularity bytecode analysis (HGBA)
algorithm in TSC-VEE. HGBA can reduce the number of
runtime detection through bytecode pre-execution without
compromising execution correctness. So TSC-VEE can
decrease the execution latency by about 6.04% on average
with the number of execution increases.

� We propose a cross-isolation-environment prefetching
(CIEP) method, which can load and store the persistent
storage data of blockchain into the secure world in advance
to avoid world switching at runtime. CIEP can help TSC-
VEE reduce smart contract execution latency by 7.48% on
average.

� We implement TSC-VEE on the Raspberry Pi 3B+ and ver-
ify the complete smart contract execution process on Trust-
Zone. Compared with the Ethereum client—Geth, TSC-
VEE achieves9.29× execution performance improvement.
Compared with evmone we implemented on TrustZone as
baseline, the execution latency of TSC-VEE can also be re-
duced by 12.63%, which is roughly the same performance
in the normal environment.

II. BACKGROUND AND MOTIVATION

In this section, we draw our motivation and detailed chal-
lenges in designing TSC-VEE from three aspects. We first in-
troduce the smart contract, point out the requirements for trusted
execution, and make a comparison with related works. Then, we
discuss the program execution mechanism on TrustZone and
analyze the shortcomings caused by the lack of the execution
environment. At last, we give the main challenges of designing
TSC-VEE by breaking down analysis of smart contract execu-
tion on TrustZone in detail.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

https://optee.readthedocs.io/en/latest/

JIAN et al.: TSC-VEE: A TRUSTZONE-BASED SMART CONTRACT VIRTUAL EXECUTION ENVIRONMENT 1775

Fig. 1. Confidential smart contract workflow.

A. Solidity Smart Contract

The concept of smart contracts was first described by Nick
Szabo: A smart contract is a computerized transaction protocol
that executes the terms of a contract [26]. The development
of blockchain technology makes the smart contract possible.
The blockchain-based smart contracts usually take the form
of generic programs. They can be automatically executed and
stored in a blockchain network [2], [3]. Developers can write
and deploy any Turing-complete program on the blockchain
network. In a decentralized smart contract system, the consensus
system enforces the autonomous execution of the contract. No
single entity or small group of entities can interfere with the
contract execution. Therefore, smart contracts can be executed
once the trigger conditions are satisfied and cannot be modified
after deployement [15], [27]. The self-executing mode of smart
contracts eliminates the need for trusted intermediaries or repu-
tation systems to reduce transaction risk. Since smart contracts
are integrated into the blockchain, they inherit the blockchain
features of availability, transparency, immutability, and integrity.
These advantages make smart contracts widely used in the asset
transactions and development of various DAPPs.

The most famous smart contract implementation is
Ethereum [28]. In 2020 alone, developers on the Ethereum
mainnet have created a total of 10.7 million smart contracts
involving tens of billions of dollars in assets [7]. Ethereum
provides a runtime environment called the Ethereum Virtual
Machine (EVM). The smart contracts are compiled into EVM
bytecode and deployed to the Ethereum network via transac-
tions. These smart contracts are written in Solidity language.
Solidity is a contract-oriented high-level programming language
created to implement mainstream smart contracts. When these
contracts run on EVM, Ethereum will utilize Gas, which is used
for solving the halting problem, to limit their computational
works and operations.

B. Confidential Smart Contract Execution

Some research has focused on using TEE to provide the ca-
pability of confidential smart contracts. The typical confidential
smart contract workflow is divided into four stages, as shown
in Fig. 1. First, the user initiates the confidential smart contract
invocation by submitting a transaction, which carries the input
data encrypted by the user’s private key. Second, after receiving
the invocation request, TEE decrypts data of the transaction
using the user’s public key. Then, the TEE loads the encrypted
source code and state from the blockchain network and decrypts

them using the TEE service key. Afterward, TEE executes
the smart contract in the execution environment, outputs the
encrypted result, and sends the ciphertext of the new state to the
blockchain network. Third, the nodes of the blockchain network
run the consensus algorithm to confirm the execution result of
the transaction and the new state. Fourth, the user obtains the
ciphertext of the state from the transaction response and can
obtain the final plaintext by decrypting data using the user’s
private key.

Following the above execution model, Confidential Consor-
tium Framework (CCF) [29], CONFIDE [30] and FPC [31]
equip each blockchain node with TEE. The smart contract
executes in the isolated area of TEE, and the encrypted re-
sult is broadcast to peer nodes for consensus. These solutions
are integrated into their consortium blockchain, respectively.
Hawk [32], ShadowEth [33], Ekiden [34], Fastkitten [35],
TZ4Fabric [17] and Phala [36] decouple the smart contract
execution from the blockchain system and execute the contracts
off-chain as a separate layer. The user pushes the smart contract
to the off-chain TEE platform for execution, and only uploads
the result to the blockchain for consensus.

Compared to this research TSC-VEE focuses on the compu-
tation stage of the confidential smart contract rather than the
entire process. TSC-VEE is dedicated to filling the gap in smart
contract execution environment on TrustZone to benefit from
the ubiquity of TrustZone, and improving the performance of
the execution environment. In terms of smart contract execution,
most of the previous works use SGX as the underlying TEE. The
techniques of these works cannot be directly applied to perform
smart contracts of Solidity language on TrustZone. For example,
ShadowETH [33] and TZ4Fabric [17] are oriented to contracts
written or rewritten in C/C++. They are unable to execute
Solidity language bytecode. CCF [29] and Ekiden [34] provide
execution environments for Solidity smart contracts, but these
execution environments cannot be applied to TrustZone for two
reasons. First, TrustZone only provides a C language runtime
environment, but Ekiden and CCF implementation require Rust
and C++, respectively. Second, the SGX hardware mechanism
by Enclave is different from TrustZone. The size of EPC memory
on SGX is usually at the hundred MB level, while the secure
memory on TrustZone-based TEEs is usually at the ten MB level.
SGX enables the dynamic creation of enclaves within the virtual
address space of user-mode processes, while TrustZone provides
two world states with system-wide hardware-enforced isolation.
Therefore, the Ekiden and CCF approach cannot meet the chal-
lenge of the time-consuming world switching. In addition, to
the best of our knowledge, Ekiden and CCF do not have any
special performance optimization mechanisms [37]. In terms of
security, TSC-VEE follows the process of the computation stage
shown in Fig. 1, encrypting the input and output data during
execution. TSC-VEE can keep the same security property as the
above research.

Moreover, the state-of-the-art TEE (e.g., SGX v2 and ARM
CCA) provides support for large secure memory, making it
easier to execute the smart contract on TEE. However, SGX
v2 increases the size of secure memory by adding EPC memory,
which increases the cost and is only applicable to specific de-
vices [38]. The device supporting ARM CCA is a long time away

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

1776 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 2. Architecture and the typical execution process of trusted application
on TrustZone.

from commercial use [39]. Although these TEEs can provide
more secure memory, the efficiency of memory usage still needs
to be improved.

Through these comparisons, we can see that the confidential
smart contract execution on the cloud servers with Intel SGX
has been studied extensively, while the embedded devices still
lack execution environment support[8]. The embedded devices
always serve as the data source and need TEEs to provide the
confidentiality guarantee for the smart contracts. These facts mo-
tivate us to design a new execution environment for performing
mainstream Solidity smart contracts on embedded devices with
TrustZone.

C. Program Execution Mechanism on TrustZone

TrustZone Architecture. TrustZone is the security architecture
in the ARM processor. As shown in Fig. 2, TrustZone pro-
vides two execution environments with system-wide hardware-
enforced isolation between them. The TEE part is called the
secure world, and the other part is called the normal world. The
processor can be in one of two states: secure and non-secure.
World switching between the two states happens via a secure
monitor call (SMC). The system resources on TrustZone are
strictly isolated: the normal world cannot access the resources
reserved for the secure world, such as memory, peripherals, etc.
OP-TEE is a popular open-source secure OS designed as the
companion to a non-secure Linux kernel running on ARM [25].
It is designed primarily to rely on the ARM TrustZone technol-
ogy as the underlying hardware isolation mechanism. OP-TEE
follows the TEE architecture and provides API for both REE
and TEE sides that are standardized by the GlobalPlatform.

World Switch. As shown in Fig. 2, software based on the ARM
architecture is divided into four exception levels: EL0-EL3,
and their corresponding privilege levels are increasing. The
application runs at EL0, and the operating system runs at EL1.
EL2 is used by the hypervisor or secure partition manager. EL3
is reserved by low-level firmware and security code. After the
SMC is sent from the OP-TEE kernel, the processor will trigger
an exception to enter the monitor mode at the highest privilege
level, which can process the world switching. The SMC monitor

first obtains the base address of the abnormal interrupt vector
table from the MVBAR register and finds the abnormal handling
function of the SMC. The state of the program saved in the CPSR
register will be stored in the SPSR register, and the LR register
saves the return address of the subroutine. The values in r0-r7
registers will be pushed onto the stack. Then the monitor will
judge the current world state by the value of the SCR.NS flag
in the SCR register. When the value is 0, the current state is the
secure world. The monitor will save the context of the secure
world and then obtain the context of the normal world. Finally,
the monitor switches to the secure world by invoking the function
sm_ret_to_nsec() to set the value of the SCR.NS flag to 1.

Execution Mechanism. Due to the lack of execution envi-
ronment, the only way to execute Solidity smart contracts is
to implement the smart contract as a trusted application on
TrustZone. Under the OP-TEE secure operating system, the host
application running in the normal environment and the TA in
the secure world complete the application call process together.
The host application and TA are programmed in C language
and comply with the OP-TEE client API and OP-TEE internal
API, respectively. These APIs enable communication between
the host application and the trusted application. This kind of
communication is supported through world switching by SMC.
OP-TEE also provides a memory area on the REE side as the
shared memory. It can be accessed by both the REE side and the
TEE side to assist the data interaction between them.

This execution mode has obvious disadvantages. First, the
developers need to reconstruct each smart contract from So-
lidity language to a TA in C language. The developers should
also provide a host application to support completing the TA
invoke and data interaction in the normal world. This execution
mode greatly increases the cost of smart contract development.
Second, the target machine will use the original build key to sign
the TA during compilation for security reasons. Therefore, the
contracts must be compiled into TAs and installed on the target
machine before the contract execution. However, smart contract
applications usually need to be updated frequently to adapt
to changes in application logic or improve security [15]. This
execution mode will bring a high additional latency overhead.

D. Analysis on Challenges

In order to solve the problems caused by the lack of execution
environment on TrustZone, we propose TSC-VEE aiming at sup-
porting mainstream smart contracts migrating and performing on
TrustZone. TSC-VEE is an independent execution environment
module like evmone2, aleth-interpreter3, etc. TSC-VEE operates
on a different level than the consensus and network mechanisms
the consensus and network mechanism and will not affect the
decentralization characteristics or execution workflow of the
underlying blockchain system. There have been some works
devoted to embedding execution environments for different lan-
guages into TrustZone, such as TLR [40] and RusTEE [19]. By
embedding these runtime environments, TrustZone can obtain
the ability to execute programs in different languages and pro-
vide trusted code execution. These works further inspire and

2https://github.com/ethereum/evmone
3https://github.com/ethereum/aleth/tree/master/libaleth-interpreter

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ethereum/evmone
https://github.com/ethereum/aleth/tree/master/libaleth-interpreter

JIAN et al.: TSC-VEE: A TRUSTZONE-BASED SMART CONTRACT VIRTUAL EXECUTION ENVIRONMENT 1777

motivate us to introduce Solidity smart contract execution into
TrustZone. Compared with TLR and RusTEE, TSC-VEE not
only adapts the execution environment to the TrustZone but also
aims to make more effort to optimize the execution environment
itself to improve performance. There are three main challenges
we need to overcome as follows:

First, the existing instruction set of Solidity and the corre-
sponding interpreter cannot match the execution mechanism
of TrustZone. The data access instructions will cause world
switches, resulting in high latency. As aforementioned, the smart
contract is executed on the TEE side, but the persistent storage
data required during execution is located at the blockchain stat-
eDB on the REE side. Therefore, cross-world data accesses like
SSTORE or SLOAD instruction need to penetrate the execution
environment. Specifically, for data loading operation, the corre-
sponding data in the blockchain stateDB on REE side should be
first copied to the shared memory via the host application. Until
the state has been switched back to the secure world, TEE can
access the data in the shared memory. According to our testing,
such cross-world data access operation can take about 6,000
clock cycles.

Second, TrustZone-based TEEs have very limited memory
resources. On the embedded development board, the available
secure memory may be only ten MB level, while the typical
memory footprint of executing smart contracts will increase
from hundreds of KB to hundreds of MB according to the com-
putational complexity. During execution, the bytecode, function
parameters, and intermediate data generated at runtime will oc-
cupy secure memory space. Since there is no memory recycling
mechanism in Solidity language, the size of intermediate data
in the work memory will keep growing at runtime. Especially
when the amount of function parameters or the calculation scale
is large, insufficient memory will cause the contract execution
to fail.

Third, frequent resource detection during contract execution
will increase the execution latency. During contract execution,
the instructions in the bytecode are executed serially. When exe-
cuting an instruction, the execution environment first computes
the stack height and gas cost and then executes the instruction
function. Such detection can ensure the correctness of contract
execution and help developers locate the position of instruction
where the exception occurs. However, this detection method
does not consider the difference between stack and gas at
the point of the execution importance and the corresponding
exception frequency, thereby increasing the detection times.
When stack overflow or out-of-gas exception occurs, contract
execution will be terminated, and the results are also invalid.

III. BASIC DESIGN OF TSC-VEE

In this section, we propose the basic design of TSC-VEE,
to the best of our knowledge, the first runtime environment
for performing smart contract bytecode in Solidity language
on TrustZone and speeding up the execution efficiency. Here,
we first introduce the threat model and then present the overall
architecture of TSC-VEE. We then give the dedicated instruc-
tion set design and explain the dynamic memory management

mechanism, RMM. Next, we introduce the hybrid granularity
bytecode analysis algorithm. In the end, we propose the cross-
isolation-environment prefetching to further improve smart con-
tract execution efficiency.

A. Threat Model

TSC-VEE is designed for devices equipped with Arm Trust-
Zone and oriented to the common scenario recognized in re-
lated work [17], [19]. We assume all software components of
TrustZone (including bootloader, firmware, security monitor,
and OP-TEE OS) are trusted, while the OS and user space in
the normal world are not trusted. We also assume the users have
secure methods to collect and process the input data. We encrypt
the input and output data and rely on the hardware isolation
mechanism of TrustZone to provide the confidentiality guaran-
tee for TSC-VEE (implemented as a TA). TSC-VEE thus can
provide security protection of smart contract execution from the
input data’s arrival to the output results’ leave. Attacks unveiled
against TrustZone itself like side-channel attacks [41], [42] are
out of the scope of our work. These attacks can be mitigated by
some orthogonal solutions [43]. In addition, TSC-VEE cannot
protect against rollback attacks, since it is deployed on Ethereum
with non-final decision consensus [31].

B. Architecture Overview

As shown in Fig. 3, Our TSC-VEE is designed to be a
stack-based program virtual machine and as a TA on the TEE
side. There are three key parts of executing smart contracts in
TSC-VEE: Data Area, Instruction Set, and Interpreter. Data Area
includes the stack and the work memory. The stack is an operand
stack and is responsible for storing the operands needed during
execution. Its word length is 256 bits. The work memory is
responsible for storing various types of data and the return values
at runtime. Before being used as operands, the runtime data in
the work memory and the state data in the blockchain storage
will first be loaded into the stack. The instruction set contains
all the instructions supported by TSC-VEE. TSC-VEE provides
a jump table that records the correspondences from opcodes to
operations or from operations to instruction functions.

The instruction interpreter is the core of TSC-VEE, respon-
sible for the bytecode interpretation and execution of smart
contracts. The interpreter consists of four main execution stages.
First, the program counter fetches the opcode from the input
bytecode stored at the TEE side. The opcode is a two-digit
hexadecimal number. Second, in the decoding stage, according
to the jump table of the instruction set, the interpreter converts
the opcode into an operation. Third, the interpreter analyzes
the stack requirement of the instruction and the static gas cost
through bytecode pre-execution. The analysis results are cached
in the shared memory for the access of the interpreter and avoid
increasing the secure memory footprint. During the analysis
stage, the corresponding function of each instruction, the pa-
rameters of some special types of instruction, and the jump
destination of the bytecode block will be recorded and used
as the input data for the next execution stage. These three stages
will be repeated until all the bytecodes have been loaded. Fourth,

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

1778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 3. TSC-VEE architecture overview.

TABLE I
THE KEY INSTRUCTIONS OF TSC-VEE INSTRUCTION SET

the interpreter executes the instructions sequentially according
to the records, dynamically corrects the gas cost, and then returns
the execution result.

In addition, the smart contract execution process in TSC-VEE
also requires the assistance of the wrapper and host application
on the REE side. The wrapper is responsible for data interaction
with the blockchain client and provides the required data to
the host application. The host application is responsible for
processing all data interactions with TA, and serves as the entry
point for calling TA.

When executing smart contracts, the application in the normal
world will initiate a contract invocation transaction, which con-
tains the contract address, sender, input data, etc. The wrapper
will load the bytecode and blockchain state from the blockchain
stateDB according to the contract address. These parameters
will be packaged and encrypted before sending to the host
application. Next, the host application invokes the TA to execute
the smart contract. Based on our security assumptions, the work-
flow of TSC-VEE can ensure the trustworthiness of execution
process. Therefore, we focus on optimizing the performance of
TSC-VEE in the following sections.

C. Dedicated Instruction Set

Table I shows the instructions of TSC-VEE. The instruc-
tion set of TSC-VEE includes 109 general instructions and
two special instructions. Each instruction has a mnemonic and

corresponding two-digit hexadecimal bytecode. The instruction
functions and types in the instruction set are based on the Solidity
native instruction set, modifying the underlying implementation
mechanism to fit the TrustZone mechanism Instructions within
the set are based on the native instruction set of Solidity. The
low-level interpretations of these instructions have been refac-
tored and are adapted to the TrustZone and OP-TEE mechanism
to support the mainstream contracts.

According to the operation type, the instructions are divided
into ten types: 1)Arithmetic instructions include four arith-
metic operations, modulo operation, and exponential opera-
tion for 256-bit operands. These instructions pop two or three
operands from the top of the stack, perform calculations, and
then push the result to the stack. 2)Comparison instructions
include data size comparison and boolean operations. They are
used for operands comparison and jump target judgment, etc.
3)Crypto instruction SHA3 is responsible for the hash calcu-
lation of blockchain. 4)Clusterstate instructions are mainly
responsible for obtaining the additional data, including sender,
input data, and other parameters when the transaction is ini-
tiated. 5)Storage instructions include popping operands from
the top of the stack, as well as data movement between the
stack and TSC-VEE work memory, or between the stack and
TSC-VEE storage. 6)Execution instructions mainly include
jump instructions and instruction to obtain the current program
counter, memory size, and remaining gas. The jump instructions
are responsible for processing the jump and verification of the
execution flow. 7)Stack instructions include three types. PUSHx
instructions push theX bytes (1-32 bytes) data onto the top of the
stack. DUPx instructions copy the Xth (1st to 16th) data of the
stack and push it onto the top of the stack. SWAPx instructions
swap the top element of the stack with the Xth(1st to 16th)
element. 8)Logging instructions are used to store logs of differ-
ent lengths in the blockchain StateDB. 9)Cluster instructions
include different contract call mode instructions and the return
instruction. 10)RMM instructions include a pair of instructions
to create a memory pointer and release memory to complete the
RMM mechanism.

It is worth noting that SLOAD and SSTORE instructions
involve cross-world data access. Executing these instructions
requires considering performing world switching according to

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

JIAN et al.: TSC-VEE: A TRUSTZONE-BASED SMART CONTRACT VIRTUAL EXECUTION ENVIRONMENT 1779

Fig. 4. The processes of memory allocation.

the access mode under CIEP. Moreover, we specially handled
the execution mechanism of CALLDATACOPY instruction by
setting a position mapping. It can help to avoid repeatedly storing
the data which has been preloaded into the TEE side.

D. Runtime Memory Management

Memory management in Solidity is currently very rudimen-
tary and lacks the memory recycling mechanism [24]. Therefore,
the work memory footprint will keep growing at runtime and
is prone to out-of-memory exceptions. Solidity provides two
keywords, storage and memory, to specify variable types.
Variables of storage type will be persistently stored in the
blockchain stateDB. Variables of memory type will be tem-
porarily stored in the work memory and will not be released
until the end of execution. Most of the data in the contracts
are of memory type to avoid high gas consumption caused
by the persistent storage. It is these data that make the work
memory(actually the secure memory on TrustZone) footprint
sustained growth with contract execution. This feature makes
it challenging to execute solidity smart contracts on TrustZone
with limited memory. We consider reducing the memory foot-
print by designing a work memory management mechanism,
including memory allocation and memory recycling.

Memory Allocation. For solidity contracts, the choice of ac-
cessing work memory is determined during compiling. The com-
piler will generate theMLOAD andMSTORE instructions at
the corresponding location according to the contract logic. When
the interpreter encounters instructions for the work memory
access or store, it will fetch the value and offset from the stack
top. With the memory allocation mechanism, TSC-VEE will
send a memory allocation request to the OP-TEE operating
system when the work memory space is insufficient. As shown
in Fig. 4, we define a fixed-size contiguous physical memory
area on TrustZone as a new memory type VM_RAM , which
is dedicated to the work memory allocation of TSC-VEE. We
register the starting address and size of VM_RAM in OP-TEE
and maintain a memory pool pointing to the unused memory
area. When OP-TEE receives work memory allocation requests,
it will perform the memory allocation algorithm as follows:

1) Expand the work memory area as required when the
remaining memory of VM_RAM is sufficient.

TABLE II
MEMORY RECYCLING INTERFACE OF TSC-VEE

2) When the remaining memory cannot meet the require-
ment, merge the contiguous area in the memory pool and
then find an area of the right size.

3) When there is also no available area in the memory pool,
move a certain size of data from the starting address of
VM_RAM to the shared memory and then release the
area.

4) Repeat Step1-3 until the requirement is met.
Memory Recycling. We consider reducing the runtime mem-

ory footprint by releasing the work memory at runtime. The
function parameters will be temporarily stored in the work
memory as local variables. The data will cause the secure
memory footprint to grow with contract execution. We provide
the developers with a pair of instructions and the matching
processing mechanism to achieve flexible runtime memory man-
agement. Table II shows the RMR interface of TSC-VEE. During
programming, developers can insert MARK and FREE marks to
the variables according to their actual lifecycle. TSC-VEE also
provides a pre-processing approach to help reduce the burden of
manual memory management for developers. This approach can
identify variable types and analyze their life-cycle according to
the pre-defined rules, and insert the marks of function param-
eters automatically. We recommend that developers fine-tune
the marks manually according to the programmatic logic if
they want to achieve accurate memory management. At the
compilation stage, the marks will be compiled into a four-bit
bytecode containing the opcode and the variable id(represents
the order of marked variables). The bytecode will be inserted
into the corresponding block. At runtime, the interpreter will
execute the corresponding opMark and opFree functions ac-
cording to the records in the jump Table The execution of opFree
will add an entry to the memory pool maintained by OP-TEE,
which contains a pointer to the released area and its size. This
kind of memory recycling actually establishes the mapping of
memory locations for the corresponding variable according to
the timing of the memory store operation and releases them
at the appropriate time. RMM can avoid explicit bugs such as
double-free and releases of non-existing variables by ignoring
them during execution and prompting the developer to fix them.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

1780 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 5. The processes of memory recycling.

As shown in Fig. 5, we take the transferFrom function in
the typical ERC20 [44] contract (which is usually used as smart
contract evaluation benchmark) as an example for analysis.
This function transfers a specific amount of tokens from one
account to another. The function has three input parameters: the
transfer-out address from, the transfer-in address to, and
the transfer amount value. This function also uses a local
variable allowance to represent the amount that the from
authorizes the sender to use. These parameters will be stored in
the work memory. When the balance of the transfer-in account
decreases, the parameter to will no longer be used. Once the
function logic is executed over, the parameters allowance,
from, and value will no longer be used. These parameters will
be released together with the completion of the function. Taking
into account the resource limitations of TrustZone, contracts
with large work memory requirements can not be executed due
to memory limitations. In TSC-VEE, developers can utilize
the runtime memory management mechanism by calling the
MARK and FREE APIs when writing the contract, as shown
in Fig. 5. The mark will also be interpreted just like other in-
structions. TSC-VEE interpreter will map the parameters from,
to, value when executing bytecode block 1© and map the
parameter allowance when executing bytecode block 2©. The
memory area of to will be released when executing bytecode
block 3©. Similarly, at bytecode block 4©, the memory area
of allowance, from, and value will be released. This mech-
anism is closely related to the execution logic of the contract.
When executing the function with large-scale parameters, the
dynamic release can obviously reduce the runtime memory
footprint.

E. Hybrid Granularity Bytecode Analysis

In addition, we designed a hybrid granularity bytecode analy-
sis algorithm based on bytecode pre-execution. During contract
execution, the detection of stack height and gas cost is performed
to ensure execution correctness. Traditionally, this detection
is performed before executing each instruction. Such frequent
detection brings high latency. Inspired by the detection method

Algorithm 1. HYBRID GRANULARITY BYTECODE ANALYSIS

Input: Function bytecode BC, Instruction JumpTable JT
Output: the analysis results set AR, the max growth of the

Stack height Smg

/* block: record of basic block, Sc: stack change */
1: AR← null, Smg ← 0, block ← null, Sc ← 0
2: begin← 0, end← BC.size()− 1, pos← begin
3: while pos �= end do
4: op← BC[pos], op_info← JT [op]
5: pos← pos+ 1, block_over ← false
6: Sc += op_info.sc
7: Smg ←Max(Smg, Sc)

/* gc: gas cost. */
8: block.gc += op_info.gc

/* jo: jump offset, jt: jump target */
9: if op is op_jumpdest then

10: AR.jo.append(pos− begin− 1)
11: AR.jt.append(AR.instrs.size− 1)
12: else
13: AR.instrs.append(opcode_info.fn)
14: end if
15: instr ← AR.instrs.get()
16: if op is the end instruction of a block then
17: block_over ← true
18: else if op is any push instruction then
19: push_end← pos+ op− op_push1
20: AR.push_values.append(BC[pos : push_end])
21: pos← push_end+ 1
22: else if op is instruction with dynamic gas cost then
23: instr.arg ← block.gc
24: end if
25: if block_over|| (pos �= end && BC[pos] is

op_jumpdest) then
26: AR.instrs[block.begin].arg ← block.close()
27: block ← newBlock()
28: end if
29: end while

of evmone at basic block granularity4, HGBA analyzes the stack
height and gas cost at different granularity before execution to
reduce the number of detection and thus reduce the execution
latency.

The analysis of stack height in HGBA is performed at the
granularity of the contract. The change of stack height is caused
by the execution order of instructions. According to the instruc-
tion interpretations, the change of stack height caused by each
instruction is fixed. We take the ADD instruction as an example.
This instruction pops out two operands from the stack and adds
them, then pushes back the result to the stack. So in this process,
the stack height will first decrease by two during execution
and then increase by one. After execution, the stack height is
reduced by one compared to the original height. Based on this

4https://github.com/ethereum/evmone/blob/master/docs/efficient_gas_
calculation_algorithm.md

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ethereum/evmone/blob/master/docs/efficient_gas_calculation_algorithm.md
https://github.com/ethereum/evmone/blob/master/docs/efficient_gas_calculation_algorithm.md

JIAN et al.: TSC-VEE: A TRUSTZONE-BASED SMART CONTRACT VIRTUAL EXECUTION ENVIRONMENT 1781

Fig. 6. Example of HGBA process.

principle, we can compute the actual stack height change and
the maximum stack height change of each instruction. When
the runtime stack height exceeds the maximum stack height, a
stack overflow exception will occur. Stack overflow detection
of HGBA is performed by pre-executing the bytecode before
contract execution for a single time, rather than performed
during the execution of each instruction as the traditional runtime
detection does. HGBA can help reduce redundant computation
by caching the maximum value of stack height. TSC-VEE will
throw an exception and will not perform the execution when the
stack overflow occurs.

The analysis of gas cost is performed at the granularity of the
basic block. A basic block is a sequence of instructions that do
not contain jumps. The gas cost of contract execution includes
two parts. One is the static gas cost of the instructions, and
the other is the dynamic gas cost that needs to be calculated
according to the actual work memory consumption at runtime.
HGBA performs static gas cost computation through bytecode
pre-execution. The calculation results are recorded at the granu-
larity of basic blocks. The dynamic gas cost will be added to the
final result during execution. With HGBA, the number of gas
cost detection can be reduced from once per instruction to once
per basic block. In the analysis process, HGBA also completes
the execution preparation to reduce the latency of the execution
stage. The instruction table containing pointers to the instruction
functions, the jump targets of each block, and parameters of
several special types of instructions will be recorded and used
as input data for the execution stage.

Algorithm.1 shows the process of the hybrid granularity byte-
code analysis algorithm. HGBA fetches the opcodes from the
bytecode according to the execution logic and decodes them
into instructions. It calculates the stack height through the stack
change Sc and the maximum growth of stack Smg of each
instruction and records the static gas cost in the basic block unit.
The instruction table, jump offset, jump target, and instruction
parameters will also be recorded as the execution preparation
during analysis. We also give an example of HGBA in Fig. 6.
The contract bytecode consists of serval basic blocks. During
execution, the basic block jumps to another according to the

control flow. The stack height is accumulated at the contract
granularity, while the gas cost is accumulated at the block
granularity. TSC-VEE can reduce the redundant computation by
caching the analysis results of HGBA. Before performing HGBA
to execute a contract function, TSC-VEE first looks up whether
there is a record of this function in the mapping table or not.
If the record exists, TSC-VEE will only perform the execution
preparation and dynamic gas computation. For a new contract
function, TSC-VEE performs HGBA in advance, computes and
records the maximum height of the stack and the static gas cost,
and completes execution preparation. This helps us avoid the
overflow exception and reduce the redundant computation.

The analysis granularity of stack overflows and gas cost
affects the times of runtime detection and the granularity of
locating exceptions. When analyzing the bytecode at the basic
block granularity, runtime detection needs to be performed for
each basic block. And when an exception occurs, the develop-
ers can locate the basic block where the abnormal instruction
locates. According to the frequency of stack overflow and gas
shortage exceptions, we set the stack overflow detection at the
contract granularity and gas cost computation at the basic block
granularity to obtain better execution performance. When the
exception occurs, the developers can verify the instructions in
the abnormal part one by one to locate it. Therefore, HGBA
achieves a balance between performance and reliability.

F. Cross-Isolation-Environment Prefetching

The execution of the smart contract function on TSC-VEE re-
quires various types of data, including input parameters, contract
bytecode, and blockchain state. All of the data can be obtained
from transaction parameters or blockchain StateDB on the REE
side. The blockchain StateDB stores the account states in the
form of key-value. Each account address corresponds to an
account storage trie, and the persistent storage data of the smart
contract is stored in the trie corresponding to the smart contract
address. During contract execution, the interpreter takes the
offset from the stack top and obtains the index through cryp-
tographic computation so as to accurately access the required
data in the account storage trie. As mentioned in Section II-C,
the cross-isolation-environment data fetching of the persistent
storage data is a time-consuming operation that needs to go
through complex processes. We propose the CIEP method to
load all the required parameters to the TEE side at a single time.

CIEP is mainly oriented to the persistent storage data in the ac-
count storage trie. It prefetches all the data entries in the account
storage trie as a superset of the reading and writing objects from
the blockchain stateDB according to the contract address. The
storage data will be stored with contract bytecode and function
parameters in the shared memory to avoid increasing the secure
memory footprint. During execution, the persistent storage data
can be modified and flushed to the blockchain stateDB when
necessary.

Fig. 7 shows the processes of the cross-world data load with
and without CIEP. Without CIEP, this operation first switches
from the secure world to the normal world, fetches and copies
data into the shared memory via host application, then switches

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

1782 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 7. The process of CIEP.

back to the secure world, loads data from shared memory, and
continues to complete execution as 1© 2© 3© 4© show. The
processes of cross-world data storage are similar but in reverse
order. These time-consuming operations will be repeatedly ex-
ecuted at runtime once the interpreter encounters the SSTORE
and SLOAD instructions.

As shown in Fig. 7, under the CIEP mechanism, the persistent
storage data can be fetched with other parameters before execu-
tion rather than at runtime. The processes of CIEP are as follows:
(1) The wrapper in the normal world will fetch the parameters
from the contract invocation transaction and the account storage
trie that contains the persistent storage in blockchain stateDB
before execution. (2) All of the data will be copied to the
shared memory between REE and TEE via the TSC-VEE host
application. (3) TSC-VEE TA will be invoked through world
switching. (4) With this data, the TSC-VEE interpreter can get
the parameters, opcode, and storage data on-demand in different
execution stages from the shared memory. A special case is that
when an inter-contract call occurs, CIEP only prefetches the
persistent storage data of the caller contract, since the blockchain
state of the called contract cannot be obtained statically. A new
contract execution process will be created to execute the called
contract, and CIEP will be performed again as (1)–(4).

In general, data-prefetching is achieved through data location
prediction and parallel data-fetching to cover the latency of data
fetch in execution. The execution latency of mainstream ERC20
contracts is usually several hundred µs, and runtime data lo-
cation prediction will bring high additional latency. In addition,
under the existing mechanism of OP-TEE, multi-threading is not
supported by TAs [25], which means that parallel executing and
data-fetching is infeasible. The cross-world data fetching still
needs to be completed by saving and switching the world state.

In fact, CIEP prefetches a superset of the reading and writing
objects from the contract level. There are two ways to narrow
down this superset. One is to perform an accurate static analysis
of data location during compiling. However, such static analysis
requires language-level support. For example, variables should
be assigned with constant addresses, which is not supported in
Solidity. The other one is to record the positions of reading and
writing objects accurately through contract pre-execution. This
way is suitable for the scenario of transaction verification on
the cloud. The miner records the reading and writing positions
when packaging the transaction, and the verifier prefetches the
data in advance for transaction verification. Introducing this
pre-execution to TSC-VEE (which serves as an execution envi-
ronment on the device) will bring a large extra latency. Overall,
CIEP is a coarse-grained prefetching method that can maintain
effectiveness while avoiding the extra latency of analysis.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of TSC-VEE. We
intend to answer the following questions:
� What does TSC-VEE supporting the execution of the main-

stream smart contracts looks like?
� What is the performance of executing smart contracts using

TSC-VEE on the TEE compared with the REE?
� What is the performance improvement brought by the

optimization mechanisms of TSC-VEE?
� How much performance improvement does TSC-

VEE achieve in terms of memory footprint?
We will answer these questions through the following two as-

pects of evaluation: (1) the executing latency and memory foot-
print of TSC-VEE. (2) the performance improvement brought
by our design.

A. Experimental Setup

Hardware and software. We used the Raspberry Pi 3B+ board
as the experimental platform. The Raspberry Pi 3B+ embeds
ARM TrustZone (ARMv8-A). It is equipped with the ARM
Cortex A53 CPU (1.4 GHz, 4Cores) and 1 GB of memory. We
use OP-TEE (version 3.8.0) as the trusted operating system. In
the normal world, we use Linux-for-arm 4.14 system as the REE
operating system to execute the client part and use other non-
secure resources. To further deeply evaluate the performance of
TSC-VEE, we also deploy Go-Ethereum5(Geth, version 1.10.4),
and evmone(version 0.8.2) on the REE side of the Raspberry
Pi board and implement evmone on the TEE side. Geth is the
most widely used Ethereum client. It provides a virtual machine
named Ethereum Virtual Machine (EVM) for smart contract
execution. The EVM is embedded in the Geth client. Evmone is
a standalone EVM implementation that aims to provide fast and
efficient execution of Solidity smart contracts, which is currently
the fastest execution environment.

Metrics. TSC-VEE is the first execution environment on
TrustZone for Solidity smart contracts. Due to the differences in
hardware mechanisms and runtime environments, it is difficult

5https://github.com/ethereum/go-ethereum

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ethereum/go-ethereum

JIAN et al.: TSC-VEE: A TRUSTZONE-BASED SMART CONTRACT VIRTUAL EXECUTION ENVIRONMENT 1783

Fig. 8. The execution latency of TSC-VEE instructions.

Fig. 9. The overall execution latency of TSC-VEE and the optimization mechanisms.

to make a fair comparison with other mechanisms on TrustZone
or the existing execution environments on SGX for Solidity. So
we perform evaluations on TSC-VEE, evmone, and Geth by
executing the ERC20 contract [44], which is usually used as
smart contract evaluation benchmark. The typical ERC20 con-
tract provide eight functions including name, symbol, decimals,
balanceOf, transfer, transferFrom, approve, and allowance.
These functions are used for token creation, transfer, and so on,
and have different blockchain state operations. The evaluation
metrics are as follows:
� Execution latency: The time cost of the different stages

during the execution of the ERC20 contract functions.
� Memory footprint: The memory consumption in the dif-

ferent stages during the execution of the ERC20 contract
functions.

B. Execution Latency

We consider execution latency from two aspects: instruction
latency and end-to-end latency. The instruction latency repre-
sents the time cost of executing an instruction. The end-to-
end latency represents the overall time cost of all execution

TABLE III
LATENCY OF OPTIMIZATION TECHNIQUES IN TSC-VEE DURING EXECUTING

ERC20 FUNCTIONS

processes. For the convenience of comparison, we implement
a C language version evmone and denote it as evmone on REE.
We migrate the evmone in C language to the TEE side directly
following the TA API without any optimization mechanism, and
denote it as evmone on TEE. Results of execution latency are
shown in Figs. 8 and 9, and Table III.

1) Instruction Latency: First of all, we test the instruction
latency and verify the effect of executing the eight functions

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

1784 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

in the mainstream ERC20 contract. The function name, sym-
bol, and decimals just get data from the blockchain storage
without any parameter, since function balanceOf, allowance
get data according to the parameter. Function approve, transfer,
transferFrom modified the data store in the blockchain stateDB.
The computational complexity of these three types of functions
is increasing. These functions of the ERC20 contract involve
43 instructions in our instruction sets. We execute the above
functions 1000 times on evmone(on REE), evmone(on TEE),
and TSC-VEE, respectively. The average results of the 20 most
frequently used instructions of each function are shown in Fig. 8.
According to the results, the execution latency of instructions
related to CIEP can be greatly reduced. For example, the latency
of SLOAD has been reduced to the same level as the evmone(on
REE) by avoiding world switching. Moreover, our optimiza-
tion mechanisms do not increase the computational load of
the instructions. The execution latency of other instructions on
REE and TEE sides is almost the same, the differences between
them are from -2.03% to 2.21%. This is because the REE side
and the TEE side are actually two different states of the same
CPU core, which are switched according to the time slices.
There is no essential difference in computing performance be-
tween them. The time-consuming instructions include SLOAD,
MSTORE, SHA3, DIV, and JUMPI. The SLOAD and MSTORE
instructions involve time-consuming operations, including data
access and copy. The SHA3 and DIV perform division and
cryptographic calculations with high computational complexity.
Besides determining whether to jump, JUMPI also needs to
verify that the jump address exists and that the jump target is
a JUMPDEST instruction. The verification takes extra time. In
addition, the results also verify the correctness of the instructions
in TSC-VEE.

2) End-to-End Latency: We further consider the end-to-
end latency from two aspects: the latency change caused by
TSC-VEE design and the overall latency. The latency change
caused by design aims to evaluate the performance improvement
brought by RMM, CIEP, and HGBA of TSC-VEE. Overall
latency represents the time from the initiation of the contract
execution request to the completion of the execution. For Geth
and evmone, the overall latency is the real execution latency.
For TSC-VEE, the overall latency contains fourfold: the latency
of CIEP, the latency of HGBA, the latency of RMM, and the
latency of instruction execution.

We test the end-to-end latency by executing eight functions
of the standard ERC20 contract 1000 times. On the basis of
on TEE (evmone on the TEE side without optimization mech-
anisms), we add the RMM, HGBA, and CIEP mechanisms to
evaluate the change in overall execution latency. The latency
change caused by RMM is shown in Fig. 9(a). According to the
results, RMM can help reduce the memory footprint with only
0.97% additional latency overhead. This is because using RMM
will increase the number of instructions. Each mark added by
developers while programming will be compiled into an extra
instruction in the bytecode. This method increases the latency
for memory release at the instruction level. It should be noted
that the out-of-memory cases do not occur in the above test.

The extra latency of such cases and improvement in memory
footprint will be discussed in detail in Section IV-C.

Fig. 9(b) shows the performance improvement brought by
the hybrid granularity bytecode analysis during the execution of
transferFrom. When executing the function only once, the exe-
cution latency of HGBA is slightly shorter than that of traditional
runtime stack overflow detection and gas cost computation. This
is because that HGBA reduces the times of stack height and
gas remaining detection. With the increase in execution times,
the performance improvement brought by the HGBA method
becomes more obvious. This is because on TEE with HGBA
does not need to perform the HGBA method during repeated
execution. Without the caching mechanism of HGBA, the de-
tection should be performed at runtime every time we execute
the function. As a result, this method can bring an average of
6.04% latency reduction, with a maximum of 23.49%.

The latency reduction caused by CIEP is shown in Fig. 9(c).
Results show that CIEP reduces the execution latency by 7.48%
on average. This latency is related to the size of the prefetched
data and the time of persistent storage operations. For func-
tion name without input parameter, this latency is 8.99us. For
function transferFrom with the most input parameters, this la-
tency is 10.02us. Without the CIEP method, all the persistent
storage(SSTORE and SLOAD) instructions during the execu-
tion process need to penetrate the execution environment. This
process includes world switching and data copy via the shared
memory. According to the results, the cross-world data access
latency accounts for 10.67% of the execution latency. The aver-
age execution latency of the cross-world data access instruction
is 4.97us.

The overall execution latency results on evmone(on REE),
TSC-VEE, and Geth are shown in Fig. 9(d). Through the
optimization mechanisms, TSC-VEE has achieved an average
performance improvement of 12.63%. And its execution per-
formance is 3.79% faster than evmone(on REE) on average.
Compared with the Geth client, TSC-VEE has a 9.29× per-
formance improvement. This improvement comes from sev-
eral aspects. First, TSC-VEE achieves 1.13× performance
improvement through the optimization mechanisms. Second,
TSC-VEE adopts the mode of analyzing the instructions first,
preparing parameters for execution, and then executing, while
Geth executes the instructions one by one directly. Third, TSC-
VEE is an independent module while the EVM of Geth is em-
bedded in the client. There is a certain amount of client overhead
during the measuring. In addition, TSC-VEE is implemented
in C language while Geth is implemented in Go language.
The difference in the programming language will also bring a
certain performance gap. Overall, these differences resulted in
a performance improvement of about 8.22×.

In addition, we evaluate the execution latency of each opti-
mization mechanism itself during the execution of TSC-VEE.
The results are shown in Table III. The total execution latency
in TSC-VEE includes the latency of RMM, HGBA, CIEP, and
the others. These four parts account for 1.10%, 7.01%, 10.67%,
and 81.22% of the total execution latency, respectively. It is
worth noting that in the above mechanism, only RMM introduces

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

JIAN et al.: TSC-VEE: A TRUSTZONE-BASED SMART CONTRACT VIRTUAL EXECUTION ENVIRONMENT 1785

TABLE IV
MEMORY FOOTPRINT OF EACH PART IN TSC-VEE DURING EXECUTING ERC20 FUNCTIONS

Fig. 10. The performance of TSC-VEE and on TEE for contracts with different
memory requirements.

additional latency overhead. HGBA and CIEP execute the steps
in the critical path in advance, rather than introducing new
execution steps. It implies that these three mechanisms can bring
large performance improvements as mentioned above, only with
negligible latency overhead.

C. Memory Footprint

We consider memory footprint from two aspects: overall
memory footprint and work memory footprint. The overall
memory footprint represents the memory consumption of all
execution processes of TSC-VEE. The work memory footprint
refers to the consumption of TSC-VEE’s work memory during
execution, which is used to evaluate the effect of the runtime
memory management mechanism. Results of memory footprint
are shown in Table IV and Figs. 10, 11, and 12.

1) Overall Memory Footprint: We first pay attention to the
memory performance of TSC-VEE in terms of overall memory
footprint. Table IV shows the memory footprint of each part in
TSC-VEE when executing the ERC20 functions. The overall
memory footprint contains the consumption of TSC-VEE and
the consumption of OP-TEE OS. The memory footprint of
TSC-VEE accounts for 40.21% of the overall memory foot-
print on average, including the TA binary file, the prefetched
data, and runtime consumption. The runtime consumption is
positively correlated with the computational complexity of the
function, and the consumption ranges from the least 291.64 KB
to the most 908.52 KB. The prefetched data contains the smart
contract bytecode, the transaction parameters, the blockchain
state, the RSA public key, and the function parameters. For
different functions in the ERC20 contract, the difference in the
prefetched data lies in the size of the function parameters. The

size of the prefetched data (CIEP) is related to the logic of the
smart contract. The more persistent storage data (essentially the
global variable) involved in the contract, the larger the size of the
prefetched data will be. We tested different functions of the same
ERC20 contract. These functions prefetch different data entries
from the same area and the number of data entries pre-fetched is
similar. At the same time, the size of each data entry is fixed at
256 bits, which is relatively small compared to all the pre-fetched
data. Therefore, the size of prefetched data is similar.

2) Work Memory Footprint: We evaluate the performance
improvement brought by the runtime memory management
mechanism of TSC-VEE when executing different sizes of con-
tracts (contracts with different memory requirements). We use
the transferFrom function mentioned in Section III-D to simulate
contracts in different sizes through loop execution. Our mecha-
nism will release the three parameters after executing the rele-
vant code block. To simulate devices with rich resources, we in-
crease the size of the secure memory on the Raspberry Pi 3B+ to
64 MB by modifying the value of PGT_CACHE_SIZE (the num-
ber of page tables in virtual memory) and CFG_TZDRAM_SIZE
(the secure memory size managed by OP-TEE OS). We first
evaluate the memory footprint of TSC-VEE and on TEE when
executing contracts of the same size. As shown in Fig. 10(a), the
memory footprint of TSC-VEE is lower than that on TEE, with
an average of 23.50%. Then, we evaluate the maximum contract
size supported on TSC-VEE and on TEE under different work
memory sizes. The size of the secure memory for OP-TEE set on
the Raspberry Pi 3B+ is 16 MB, which is divided into three parts:
TEE RAM, TA RAM, and VM_RAM. We adjust the size of the
work memory available for the execution environment by setting
the size of VM_RAM. The results are shown in Fig. 10(b). The
experimental results show that our memory recycle mechanism
can help to run contracts of larger size under the same VM_RAM
size compared with on TEE. The difference between the two
lines in the figure represents the part of the work memory
released by our memory recycle mechanism. This improvement
is 22.95% on average.

We evaluate the performance of RMM when the size of work
memory cannot meet the memory requirement of contract. As
mentioned in Section III-D, in this case, the execution environ-
ment will write out a certain part of the data from the work
memory to the REE side. During this process, TSC-VEE moves
the data to the shared memory, and switches to the REE side.
The position of the data in shared memory will also be passed
as a parameter to the host application. Then the host application

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

1786 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

Fig. 11. The change of memory footprint of TSC-VEE and on TEE over time.

Fig. 12. The execution latency of TSC-VEE and on TEE for contracts with large memory requirements.

moves the data from the shared memory to other memory areas,
and switches back to the TEE side to continue executing. There-
fore, a write-out operation only involves world state switches
twice. We add this write-out mechanism for on TEE to compare
with TSC-VEE. We set the VM_RAM to 4 MB and execute the
contract with an 8 MB memory requirement using TSC-VEE and
on TEE, respectively. Fig. 11 shows the change of memory foot-
print over time under different write-out granularity. According
to the write-out granularity, the execution environment needs to
perform data write-out several times to meet the requirements
of contracts Since TSC-VEE performs memory recycling at
runtime, its memory footprint is lower. Under the same work
memory size, the size of memory that TSC-VEE needs to obtain
by data write-out is smaller. Therefore, the times of data write-
out of TSC-VEE are less than on TEE, as shown in Fig. 11(a)
and (b). Fewer data write-out times make the execution latency
of TSC-VEE lower. These reasons make TSC-VEE performs
much faster than on TEE. Also, according to the discussion
in Section IV-B, we know that TSC-VEE performs faster than
on TEE by about 12.63%. This implies that even the memory
footprint of TSC-VEE and on TEE seems to be similar at the
same time, TSC-VEE has actually satisfied more memory
requirements.

We further evaluate the execution latency under large memory
requirements in detail, and the results are shown in Fig. 12. The
size of VM_RAM is set to be 4 MB. Fig. 12(a), (b), (c), and
(d) shows the execution latency of TSC-VEE and on TEE with
different write-out granularity under the memory requirement of
5, 8, 50, and 100 MB, respectively. Overall, due to differences in
data write-out times and execution speed, the execution perfor-
mance of TSC-VEE is 12.71% ∼ 30.11% faster than on TEE.
According to the results, we can find the following phenomena:

1) The more data we write out, the greater the write-out
latency is.

2) When a lot of data has been written out, the execution
latency will increase slightly, since several data on REE
side need to be accessed during execution.

3) If the write-out granularity does not match the memory
requirement, there may be cases where only 0.1 MB of
memory is required, but 4 MB of data wrote out. This case
will increase the times of data write-out and significantly
increase the execution latency.

So we can observe that the size of write-out data should be
as close as possible to the real memory requirement to achieve
faster execution. From this perspective, smaller write-out gran-
ularity can make the size of data written out closer to the
memory requirement. When writing out data of the same size,
small-grained write-out will increase the times of write-out.
Each write-out operation means switching twice between the
TEE side and the REE side. Compared with the latency of data
movement, this µs-level switch latency is almost negligible.
Our experimental results also show that the execution latency
is generally close to optimal at a small granularity of 0.5 MB.
This conclusion can provide a reference for setting the write-out
granularity.

D. Security and Scalability Discussion

Security Analysis. TSC-VEE follows the standard workflow
of the confidential smart contract and focuses on the contract
computation stage. Before execution, the user encrypts the
blockchain state and contract parameters and stores it in the
shared memory as the input. TSC-VEE decrypts the data and
then executes the smart contract. TSC-VEE prefetches the per-
sistent storage data to the TEE side with CIEP to avoid privacy
leakage during runtime data interaction. Relying on TrustZone’s
hardware-enforced isolation, TSC-VEE completes the contract
execution process and generates the new blockchain state. The

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

JIAN et al.: TSC-VEE: A TRUSTZONE-BASED SMART CONTRACT VIRTUAL EXECUTION ENVIRONMENT 1787

results are also encrypted and stored in shared memory and used
after decryption. Thus, TSC-VEE maintains the same security
property as the existing confidential smart contract under our
threat model, but cannot deal with the rollback attacks caused
by non-deterministic consensus protocols.

Scalability Analysis. TSC-VEE is deployed on the node of the
blockchain system as the smart contract execution environment
like EVM. With the delicately designed optimization mecha-
nism, TSC-VEE can achieve similar execution performance to
that in non-secure environments, without significant additional
overhead at the single point. From the perspective of blockchain
architecture, TSC-VEE operates on a different level than the con-
sensus and network mechanisms. It does not affect the workflow
of smart contracts and the scalability of the blockchain system.
It can be easily extended to the blockchain network by equipping
the node with TrustZone like previous work does [29].

V. CONCLUSION

In this article, we propose TSC-VEE, the first virtual ex-
ecution environment to support mainstream smart contracts
programmed by Solidity Language running on TrustZone. We
first design a specific instruction set for Solidity smart con-
tracts adapted to the execution mechanism of TrustZone. TSC-
VEE has achieved competitive performance by three proposed
optimization technologies, the runtime memory management
mechanism, the hybrid granularity bytecode analysis algorithm,
and the cross-isolation-environment prefetching. Experimental
results illustrate that TSC-VEE can support mainstream Solidity
contracts performing on TrustZone with competitive execution
efficiency and memory footprint. The source code TSC-VEE can
be found at https://github.com/nkicsl/TSC-VEE.

REFERENCES

[1] M. Wu, K. Wang, X. Cai, S. Guo, M. Guo, and C. Rong, “A comprehensive
survey of blockchain: From theory to IoT applications and beyond,” IEEE
Internet Things J., vol. 6, no. 5, pp. 8114–8154, Oct. 2019.

[2] W. Zou et al., “Smart contract development: Challenges and opportunities,”
IEEE Trans. Softw. Eng., vol. 47, no. 10, pp. 2084–2106, Oct. 2021.

[3] T. Lu and L. Peng, “BPU: A blockchain processing unit for accelerated
smart contract execution,” in Proc. IEEE/ACM 57th Des. Automat. Conf.,
2020, pp. 1–6.

[4] X. Guo, Q. Guo, M. Liu, Y. Wang, Y. Ma, and B. Yang, “A certificateless
consortium blockchain for IoTs,” in Proc. IEEE 40th Int. Conf. Distrib.
Comput. Syst., 2020, pp. 496–506.

[5] O. Novo, “Scalable access management in IoT using blockchain: A perfor-
mance evaluation,” IEEE Internet Things J., vol. 6, no. 3, pp. 4694–4701,
Jun. 2018.

[6] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au, and Q. Wang, “Towards
privacy-assured and lightweight on-chain auditing of decentralized stor-
age,” in Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst., 2020.

[7] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (SOK),” in Proc. Int. Conf. Princ. Secur. Trust, 2017,
pp. 164–186.

[8] R. Li, Q. Wang, Q. Wang, D. Galindo, and M. Ryan, “SOK: Tee-assisted
confidential smart contract,” Proc. Privacy Enhancing Technol., vol. 2022,
pp. 711–731, Aug. 2022.

[9] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[10] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Comput. Surv., vol. 51, no. 6, pp. 1–36, 2019.

[11] A. M. Devices, “Secure encrypted virtualization API: Technical preview,”
in Proc. Adv. Micro Devices, 2019, Art. no. 55766.

[12] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone:
An open framework for architecting trusted execution environments,”
in Proc. 15th Eur. Conf. Comput. Syst., 2020, pp. 1–16.

[13] E. Feng et al., “Scalable memory protection in the PENGLAI enclave,”
in Proc. 15th USENIX Symp. Operating Syst. Des. Implementation, 2021,
pp. 275–294.

[14] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the Internet of Things,” IEEE Internet Things J.,
vol. 6, no. 2, pp. 1594–1605, Apr. 2018.

[15] T. Li, Y. Fang, Z. Jian, X. Xie, Y. Lu, and G. Wang, “ATOM: Architectural
support and optimization mechanism for smart contract fast update and
execution in blockchain-based IoT,” IEEE Internet Things J., vol. 9, no. 11,
pp. 7959–7971, Jun. 2021.

[16] Statista, “Arm’s market share and targets across key technology
markets in 2019 and 2028 fiscal years,” 2022. [Online]. Avail-
able: https://www.statista.com/statistics/1132112/arm-market-share-
targets/#statisticContainer

[17] C. Müller, M. Brandenburger, C. Cachin, P. Felber, C. Göttel, and
V. Schiavoni, “TZ4Fabric: Executing smart contracts with ARM Trust-
Zone : (Practical experience report),” in Proc. IEEE Int. Symp. Reliable
Distrib. Syst., 2020, pp. 31–40.

[18] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch, “Teechain:
A secure payment network with asynchronous blockchain access,” in Proc.
27th ACM Symp. Operating Syst. Princ., 2019, pp. 63–79.

[19] S. Wan, M. Sun, K. Sun, N. Zhang, and X. He, “Rustee: Developing
memory-safe ARM trustzone applications,” in Proc. Annu. Comput. Secur.
Appl. Conf., 2020, pp. 442–453.

[20] A. Juels, A. Kosba, and E. Shi, “The ring of gyges: Investigating the future
of criminal smart contracts,” in Proc. Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 283–295.

[21] W. Gavin et al., “The solidity contract-oriented programming language,”
2014. [Online]. Available: https://github.com/ethereum/solidity

[22] Z. Jian, “Analysis of popular smart contracts on ethereum,” 2022. [Online].
Available: https://github.com/JolyonJian/contracts

[23] “Contract internal transactions & contracts with verified source codes
only,” 2021. [Online]. Available: https://etherscan.io

[24] K. Śliwak et al., “Internal of solidity, layout in memory,” 2021. [Online].
Available: https://docs.soliditylang.org/en/v0.8.11

[25] W. Gavin et al., “The official documentations of OP-TEE,” 2019. [Online].
Available: http://optee.readthedocs.io

[26] N. Szabo, “Formalizing and securing relationships on public networks,”
First monday, 1997, vol. 2, no. 9, .

[27] Y. Huang, Q. Kong, N. Jia, X. Chen, and Z. Zheng, “Recommending
differentiated code to support smart contract update,” in Proc. IEEE/ACM
27th Int. Conf. Prog. Comprehension, 2019, pp. 260–270.

[28] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32,
2014.

[29] M. Russinovich et al., “CCF: A framework for building confidential
verifiable replicated services,” Technical report, Microsoft Research and
Microsoft Azure, 2019.

[30] Y. Yan et al., “Confidentiality support over financial grade consortium
blockchain,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020,
pp. 2227–2240.

[31] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, “Trusted
computing meets blockchain: Rollback attacks and a solution for hyper-
ledger fabric,” in Proc. IEEE 38th Symp. Reliable Distrib. Syst., 2019,
pp. 324–32409.

[32] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. IEEE Symp. Secur. Privacy, 2016, pp. 839–858.

[33] R. Yuan, Y.-B. Xia, H.-B. Chen, B.-Y. Zang, and J. Xie, “Shadoweth:
Private smart contract on public blockchain,” J. Comput. Sci. Technol.,
vol. 33, no. 3, pp. 542–556, 2018.

[34] R. Cheng et al., “Ekiden: A platform for confidentiality-preserving, trust-
worthy, and performant smart contracts,” in Proc. IEEE Eur. Symp. Secur.
Privacy, 2019, pp. 185–200.

[35] P. Das et al., “FastKitten: Practical smart contracts on bitcoin,” in Proc.
28th USENIX Secur. Symp., 2019, pp. 801–818.

[36] H. Yin, S. Zhou, and J. Jiang, “Phala network: A confidential smart contract
network based on polkadot,” 2019. [Online]. Available: https://files.phala.
network/phala-paper.pdf

[37] E. A. et al., “Enclave EVM(EEVM), an open-source, standalone, embed-
dable, C implementation of the ethereum virtual machine,” 2019. [Online].
Available: https://github.com/microsoft/eEVM

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/nkicsl/TSC-VEE
https://www.statista.com/statistics/1132112/arm-market-share-targets/#statisticContainer
https://www.statista.com/statistics/1132112/arm-market-share-targets/#statisticContainer
https://github.com/ethereum/solidity
https://github.com/JolyonJian/contracts
https://etherscan.io
https://docs.soliditylang.org/en/v0.8.11
http://optee.readthedocs.io
https://files.phala.network/phala-paper.pdf
https://files.phala.network/phala-paper.pdf
https://github.com/microsoft/eEVM

1788 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 6, JUNE 2023

[38] F. McKeen et al., “Intel software guard extensions (intel SGX) support
for dynamic memory management inside an enclave,” in Proc. Hardware
Architectural Support Secur. Privacy2016, pp. 1–9.

[39] X. Li et al., “Design and verification of the ARM confidential compute
architecture,” in Proc. 16th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2022, pp. 465–484.

[40] N. Santos et al. , “Using arm trustzone to build a trusted language runtime
for mobile applications,” in Proc. 19th Int. Conf. Architectural Support
Program. Lang. Operating Syst., 2014, pp. 67–80.

[41] K. Ryan, “Hardware-backed heist: Extracting ECDSA keys from qual-
comm’s trustzone,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2019, pp. 181–194.

[42] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “Voltjockey: Breaching trustzone by
software-controlled voltage manipulation over multi-core frequencies,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 195–209.

[43] J. F. et al., “Arm speculation barrier,” 2017. [Online]. Available: https:
//github.com/ARM-software/speculation-barrier

[44] V. Buterin and F. Vogelsteller, “ERC-20 token standard,” 2015. [Online].
Available: https://theethereum.wiki/w/index.php/ERC20TokenStandard

Zhaolong Jian received the BS degree in the Internet
of Things from Nankai University, in 2020. He is cur-
rently working toward the PhD degree in the College
of Computer Science, Nankai University. His main
research interests include blockchain, smart contract,
and Internet of Things.

Ye Lu received the BS and PhD degree from Nankai
University, Tianjin, China, in 2010 and 2015, respec-
tively. He is an associate professor with the Col-
lege of Cyber Science, Nankai University now. His
main research interests include FPGA accelerator,
blockchain virtual machine, embedded system, Inter-
net of Things.

Youyang Qiao received the BS degree in Internet
of Things from Nankai University, in 2020. She is
currently working toward the the master’s degree in
computer science with Nankai University. Her main
research is WebAssembly in the blockchain system.

Yaozheng Fang received the BS degree from the
Hebei University of Technology, Tianjin, China, in
2019. He is currently working toward the PhD degree
in the College of Computer Science, Nankai Univer-
sity. His main research interests include blockchain,
smart contract and Internet of Things.

Xueshuo Xie received the PhD degree in engineer-
ing from Nankai University, in 2021, the BS and
MA, SC degrees from Shandong University, Jinan,
China, in 2011 and 2014. He is a postdoctoral in the
College of Computer Science, Nankai University. He
is currently working with the Intelligent Computing
System Lab, College of CyberScience, Nankai Uni-
versity, Tianjin, China. His current research interests
include IoT security, data-driven anomaly detection,
and blockchain.

Dayi Yang received the MS degree from Fudan Uni-
versity, in 2017. He is now working with Antgroup
as a software engineer. His main research interests
include collaborative computing, blockchain technol-
ogy and fintech.

Zhiyuan Zhou received the MS degree from Chinese
Academy of Sciences, in 2007. He is now working
with Antgroup as a software architect. His main re-
search interests include cloud computing, blockchain
technology and fintech.

Tao Li (Member, IEEE) received the PhD degree
in computer science from Nankai University, China
in 2007. He works with the College of Computer
Science, Nankai University as a professor. He is the
Member of the ACM, and the distinguished mem-
ber of the CCF. His main research interests include
heterogeneous computing, machine learning and In-
ternet of things.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:38:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ARM-software/speculation-barrier
https://github.com/ARM-software/speculation-barrier
https://theethereum.wiki/w/index.php/ERC20TokenStandard

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

