
WIP: Sysnif: Constructing Workflow from
Interleaved Logs in Intelligent IoT System

Zongming Jin1, Xueshuo Xie1, Yaozheng Fang1, Zhaolong Jian1, Ye Lu1,3,∗, Guangying Li2,∗
1 College of Cyber Science, Nankai University, Tianjin, China

2 Cyberspace Administration of Tianjin, China
3 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy

of Sciences, Beijing, China

{zongming jin, xueshuoxie, fyz, jianzhaolong}@mail.nankai.edu.cn, luye@nankai.edu.cn, ligying@163.com

Abstract—The massive smart devices in intelligent IoT can be
broken due to malicious attacks and system failures. As a non-
intrusive method, workflows mined from system logs facilitate
administrators to quickly locate and diagnose anomalies in
time. System logs are usually interleaved since there are lots of
concurrent and asynchronous operations and executions on large
scale IoT devices. Consequently, it is so challenging to construct
an adaptive workflow from these logs and realize the real-time
anomaly detection. To meet this challenge, in this paper, we pro-
pose a two-stage workflow construction approach named Sysnif,
which includes offline construction and online adjustment. First,
the window-based dependence computing method is employed to
obtain the context of execution paths. Second, a weight-greedy
algorithm is designed to denoise the interleaved system logs
effectively. Third, in order to match system mechanism variation,
the online micro-iteration adjusting algorithm is presented to
update the workflow model. Experiment results highlight that
Sysnif can outperform state-of-the-art methods, such as Logsed,
on dataset of OpenStack logs by 22.4% on recall, meanwhile
maintaining the same precision roughly. Sysnif can achieve an
average precision and recall of 93.8% and 94.7%, respectively.

Index Terms—Workflow, Interleaved Logs, Dependence com-
puting, Micro-iteration adjusting

I. INTRODUCTION

Modern intelligent IoT systems become extremely complex,

including thousands of components and providing services

for multiple users concurrently. For administrators, monitoring

from system logs is an important way to catch operating status

and maintain system running normally. With the increase of

IoT system scale and complexity, a large number of logs

generated has achieved the terabyte level per day [1]. Manually

processing these logs is too hard to understand what happens

about systems over time. Workflow mined from system logs

is a non-intrusive method to facilitate system maintenance,

which can help administrators understand system behaviors

and monitor the validity of system operations. However, it

is challenging that workflow is usually not available due

to system imperfect documents and specifications [2]. It is

also difficult to build an adaptive workflow model from the

interleaved logs, since the running mechanism of IoT system

is variable and polymorphous.

It is a common practice to record system run-time

information in logs in detail which facilitate administrators or

researchers to understand system behaviors and then locate

possible problems [3], [4]. A typical raw log entry is shown

as following example, containing timestamp, verbosity level
and raw message content.

2020-02-10 20:38:31,5186 INFO dfs.DataNode$DataXceiver:

Receiving block blk_6853481264720481267 src:

/10.210.11.53:48251 dest: /10.210.11.53:50754

The raw message content can be divided into two parts:

constant part and variable part. The constant part is the

fixed plain text which displays every event type in log

messages. The variable part represents the system run-

time information changing over time. For log entries, the

template is responsible to the constant part and the parameter
represents the variable part. In the example, the template can

be denoted as “Receiving block ∗ src : ∗ dest : ∗”, and the

parameter is marked using ∗. Since the template represents

specific state when system running, it is used as the node in

the workflow model.

However, concurrent and asynchronous of the system op-

erations result in log interleaving, which is often disorderly

by intuition. In general, log interleaving can introduce context

missing and noise problems, which make it hard to separate the

logs of different tasks. But in principle, to construct workflow

models, administrators or researchers have to separate logs

first for extracting program execution paths. Some previous

works [2], [5] assume that each log entry has an identifier that

uniquely identifies the specific execution. Nevertheless, system

logs are different from application logs, which cannot obtain

unique identification information. Besides, the variability and

polymorphism of system bring the model aging problem.

However, some works based on data mining or machine

learning is carried out offline, such as [6] and [7], without

considering the adverse effects of model aging. What’s more,

there is commercially security information and event manage-

ment software, such as Splunk [8], that is used in processing

log data, but they require instrumentation in specific system

components to generate traces for further analysis.

To address the above problems, we construct workflow

models from system logs for widely applicable and non-

intrusive monitor to the IoT system. In this paper, we propose

a two-stage approach named Sysnif to construct the workflow

264

2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)

978-1-6654-2263-5/21/$31.00 ©2021 IEEE
DOI 10.1109/WoWMoM51794.2021.00049

20
21

 IE
EE

 2
2n

d
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

a
W

or
ld

 o
f W

ire
le

ss
, M

ob
ile

 a
nd

 M
ul

tim
ed

ia
 N

et
w

or
ks

 (W
oW

M
oM

) |
 9

78
-1

-6
65

4-
22

63
-5

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

W
oW

M
oM

51
79

4.
20

21
.0

00
49

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

O
ff

lin
e

co
ns

tru
ct

O
nl

in
e

ad
ju

st

Unstruct
raw system

log

Structured template
sequence

Weight-greedy
noise filter

T2

T1

T3

T0

T4

T5

l1 : Template 6
l2 : Template 2
l3 : Template 0
l4 : Template 3
l5 : Template 5
l6 : Template 4

0.0,0.4,0.3,0.0,0.0,0.0
0.0,0.0,0.0,0.0,0.5,0.0
0.0,0.0,0.0,0.3,0.0,0.2
0.0,0.0,0.0,0.0,0.5,0.0
0.0,0.0,0.0,0.0,0.0,0.0
0.0,0.0,0.0,0.0,0.5,0.0

Dependence iteration
adjust

T2->T3:System real-time Log template stream

T2

T1

T3

T0

T4

T5

×

Dependence compute

Micro-iteration adjust

Offline
workflow

Online
workflow

Offline preprocess

Online preprocess

 T0 T5 T4 T3 T2 T1 T0 T3 T2 T4 T5 T0
Log parse

Base
depen-
dence

T6 T2 T0 T3 T5

T2 T6 T3 T8 T4

T1 T9 T2 T3 T5

T4

T5

T4

T4 T2 T3 T6 T5 T0

1
0
0
4
1
3
2
0
1

0.08
0.00
0.00
0.33
0.08
0.25
0.17
0.00
0.33

Cou nt
Vector

Depen-
dence
Vector

T2T2

Template 6
Template 2
Template 0
Template 3
Template 5
Template 4

T2->T5:
19:31:36.264 DisplayPowerController: Display ready!
19:31:36.266 KeyguardService: KGSvcCall onScreenTurnedOn.
19:31:36.269 PhoneStatusBar: onScreenTurnedOn
19:31:36.275 Mms_TX_NOTIFY: ScreenState present
19:31:36.277 LogCollectService: msg = 103 received
19:31:36.278 StatusBarIconView: updateTint: tint=0
19:31:36.281 HwNotificationIconAreaController: showNotificationAll
19:31:36.285 TotemWeather: RetryTaskController:mTaskList is null

Noise filter

Fig. 1. Sysnif main procedures: offline workflow construction and online adjust update.

offline and adjust the workflow online. At the offline stage,

we build a basic workflow model relied on interleaved system

logs. To deal with context missing caused by logs interleaving,

we employ the variable window-based dependence computing

method and design a weight-greedy algorithm to find the true

neighbors and filter the noise. Then, at the online stage, we

present a micro-iteration algorithm to match system mecha-

nism variation by updating the offline model. In summary,

this paper makes the following contributions:

• Employ the variable window-based method for depen-

dence computing to prevent context missing. The true

neighbors of the current entry in interleaved logs can be

covered through variable windows.

• Design an effective weight-greedy noise filter algorithm,

which can select the true successor among candidates in

the window and remove noise branches.

• Present a micro-iteration adjusting algorithm to be adapt-

able for system variation. This algorithm can not only

obtain the real-time workflow models, but also avoid a

lot of resource consumption when constructing workflow

once again.

II. WORKFLOW CONSTRUCT

In this section, we give a detailed description of Sysnif.

As shown in Fig. 1, the main procedure consists of the

offline stage and the online stage. To overcome the context

missing and noise issues, we employ the variable window-

based method to compute template dependence and design a

weight-greedy algorithm to filter noise. The micro-iteration

algorithm is presented to update the offline workflow model

with system real-time running.

A. Window setting guidance

Logs belonging to the same execution will not be continuous

in the log file as the context missing. Thus, it is inadequate to

only check the direct predecessor or successor when building

the workflow model. No matter how context missing, the true

predecessor or successor of the current log entry belonging to

the same execution will appear nearby. In this paper, Sysnif

sets an n-length window to cover the true neighbors.

When setting a window to find the true successor of the

current template, the rest entries in the window have no

relationship with this current template. The rest entries are

the noise although they may be the running track of other

executions. A proper window length can ensure the successor

discovery ability and also reduce the noise introduced as much

as possible. The calculation of the optimal window length is an

NP-hard problem, hence it is reasonable to set an optimal close

window length. In practice, the proper window length setting

can start from the number of executions until the length of the

shortest task.

B. Dependence computing

Dependence is used to measure the bond between templates.

As shown in Fig. 1’s Dependence compute part, Count Vector

(C V) is firstly calculated where the value is the template

occurrence count respectively within the window after the

current template in the log sequence. Although the system logs

are interleaved, the true neighbors of the template entry will

appear nearby. The true successor of the reference template

will finally appear in a short period while noise template

entries randomly appear. Therefore, true successor entries of

the current template have a higher frequency of appearing

within the window and the frequency can represent the de-

pendence of two templates. The Dependence Vector (D V)

can be computed through formula (1).

D Vi[j] = C Vi[j]/sum(C Vi) (1)

Where D Vi and C Vi represent Ti’s Dependence Vector and

Count Vector respectively.

There are two types of dependence: true dependence and

noise dependence. True dependence is naturally caused by

265

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

the time-series order of the ground template sequence, but

noise dependence is brought by the random interleaving of

other execution log entries. Intuitively, the program just needs

to set a filtering threshold of Θ. For each template Ti, if

Dependence(i, j) > Θ, there is a true dependence between Ti

and Tj, on the contrary, it is noise dependence that needs to be

filtered. This method cannot handle the multi-branch scenario,

which leads to dependence dispersion. Since the frequency

derived from the main branch spreads to multiple branches,

the multi-branch dependence is likely to be judged as noise.

C. Weight-greedy noise filter

To deal with the noise issue in the dependence vector, the

weight-greedy algorithm is designed to filter noise. Firstly,

the feature enhancement is used to solve the problem of

multi-branch feature dispersion. The feature enhancement is to

combine multiple dependence to form a new feature and use

the enhanced feature to do jointly noise filtering. Secondly, the

smallest subset which just consists of true dependence without

noise is computed. Weight-greedy noise filter algorithm tries 1-

union, 2-union, 3-union, ... n-union until the jointly enhanced

feature can meet the dependence requirement.

Algorithm 1 Weight-greedy noise filter

Input: a Dependence Vector D V .
Output: the smallest subset and the pure dependence vector.
Global: a significance factor γ.

1: Ssmallest ← {};
// The smallest subset is initialized as the empty set.

2: ‖D V ‖F =
√∑

i D V 2
i ;

// The Frobenius norm of D V .
3: L = len(D V);

// The number of templates.
4: dependence array = list(D V);
5: sort(dependence array);
6: for i = 0; i < L; i++ do
7: Ssmallest.append(dependence arrayi);
8: if ‖Ssmallest‖F /‖D V ‖F > γ then
9: break;

10: end if
11: end for
12: for i = 0; i = L; i++ do
13: if not D Vi in Ssmallest then
14: D Vi = 0;
15: end if
16: end for
17: return Ssmallest and D V

Algorithm 1 shows weight-greedy noise filter details. At

first, the smallest subset is initialized as an empty set, where

to place the true successor templates. Then Frobenius norm

of D V is computed to represent the dependence vector

information. A significance factor γ is defined globally. To

make greedy choices, sorting is performed on D V . Then the

algorithm continually appends the dependence to the smallest

subset according to the sorted sequence until the proportion

reaches γ. Finally, the values in D V that are not in the

smallest subset are cleared as noise and return the results.

A basic workflow model can be built from pure D V easily

where the non-zero value means that there is an edge between

two templates.

D. Workflow model update

The system mechanism has different state migration over

time, or even completely shifts to a new running model that

has never appeared before. The workflow model established

offline can be updated by capturing changes in the system logs

to match the variation of the system mechanism. There are

two situations for workflow update, namely, real-time work-

flow model fine-tuning and periodic model reconstruction.

Workflow fine-tuning uses the real-time log stream to adjust

the weights of the edges in the offline workflow model and

dynamically adds or removes the state transition edges. Since

the system mechanism may completely shift to a new running

model, the periodic check and reconstruction are also adopted

to avoid multitudinous meaningless fine-tuning.

The offline workflow model is constructed from pure D V
after noise filtering, where the transition weights correspond to

the dependence value in D V . In the online fine-tuning stage,

the weight micro-iteration algorithm continuously adjusts the

dependence from the log stream. If the dependence value

reaches the upper or lower limit, the online update method

needs to add or remove the transition edge.

As shown in algorithm 2, the micro-iteration adjust algo-

rithm continually checks the real-time log stream and fine-

tune the dependence value iteratively. The online model is

initialized as the static workflow model established offline, and

obtains all dependence values meanwhile. Then the algorithm

continually takes L length Fragment, if the dependence pair

of the online model can be found in the Fragment, add a

micro-iteration step μ to the dependence. On the contrary,

subtract μ accordingly. What’s more, the upper limit Limitu
and the lower limit Limitl are set to judge whether to add

or remove a particular edge between template nodes. When

the dependence value exceeds the Limitu or lowers than the

Limitl, the corresponding transition edge needs to be added

or removed.

III. EVALUATION

Five groups of experiments data sets are collected from

OpenStack to evaluate the workflow construction performance

of Sysnif. These experiments test the potential factors that

affect the results of accuracy and efficiency: the tasks concur-

rently executing number. The more tasks running concurrently,

the higher the interleaving complexity of logs. The concurrent

task number is set from 2 to 6. We choose state-of-the-art

Logsed [9] based on clustering as our baseline and the com-

parison metrics are standard Precision/Recall. The precision

is the fraction of mined edges that are in the ground truth

workflow model and the recall is the fraction of the ground

truth workflow model edges that are mined.

The Precision and Recall compare experiment results are

illustrated in Fig. 2. Logsed has high precision but the recall

is unsatisfied badly as the number of concurrency increases.

The branches in the OpenStack VM life cycle model will

266

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Micro-iteration adjust

Input: a log stream Streamlog and a basic offline workflow model
Modeloffline.
Output: the real-time online workflow model Modelonline.
Global: a fragment length L, a micro-iteration step μ,
and the dependence upper limit and lower limit Limitu,
Limitl.

1: Modelonline ← Modeloffline

// The Modelonline is initialized as Modeloffline

2: while True do
3: D V = getD V (Modelonline)
4: logFragment = getleastNEntries(L, Streamlog)
5: for (Predec, Succes) in Modelonline do
6: if (Predec, Succes) in logFragment then
7: D VPredec,Succes+ = μ
8: else
9: D VPredec,Succes− = μ

10: end if
11: if D VPredec,Succes > Limitu then
12: addEdgeBetween(Predec, Succes)
13: end if
14: if D VPredec,Succes < Limitl then
15: removeEdgeBetween(Predec, Succes)
16: end if
17: end for
18: end while

lead to dependence dispersion and Logsed filters out some

true dependence as noise. While Sysnif employs the weight-

greedy noise filter covering that shortage and has a better

performance. Sysnif can achieve an average precision and

recall of 93.8% and 94.7%, respectively.

We also carry out a comparison experiment of direct con-

struction of 3k logs and 2k logs construction + 1k logs micro-

iteration and the Precision/Recall results are 0.948/0.935 and

0.953/0.929. In this experiment, the window length L is set

to 5 and the micro-iteration step μ is set to 0.008. The

upper limit Limitl and the lower limit Limitu are set to

0.1 and 0.9. It can be concluded that construction + micro-

iteration can achieve the accuracy level of direct construction.

However, micro-iteration works online that outputs the real-

time workflow model with the system running and avoids the

massive resource consumption of workflow re-construction.

Fig. 2. The Precision/Recall comparison of Sysnif and Logsed.

Sysnif is based on statistical computing with very few

iterations. The time complexity of D V computation and

sorting procedure in weight-greedy noise filter are O(n) and

O(Nlog(N)) respectively, where n is the log length and

N is the template number which is much smaller than n.

In i5-8300H CPU and 8GB Memory hardware environment,

Sysnif’s time consumption of processing 10k logs is 3.95s. It

can be concluded that Sysnif can achieve seconds per 10k
logs processing level.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose Sysnif to construct the workflow

model from interleaved system logs which can facilitate sys-

tem maintenance in intelligent IoT. To deal with the context

missing and noise problems caused by interleaved logs, and

the model aging issues lead by the system running mechanism

variation, Sysnif utilizes variable window-based dependence

computing, weight-greedy noise filter, and micro-iteration ad-

just update. Finally, the workflow model can be constructed

from offline interleave logs and adjusted to match system

mechanism variation. The workflow model can be applied

in many fields, such as intelligent IoT system maintenance,

distribute system tracing, and cloud computing anomaly de-

tection, which will be studied in the future.

ACKNOWLEDGMENT

This work is partially supported by the National

Key Research and Development Program of China

(2018YFB2100300), the CERNET Innovation Project

(NGII20180306, NGII20190402), and sponsored by Zhejiang

Lab (2021KF0AB04).

REFERENCES

[1] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion. ACM, 2016, pp. 102–111.

[2] J.-G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program workflow
from interleaved traces,” in Proceedings of the 16th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM,
2010, pp. 613–622.

[3] X. Xie, Z. Jin, J. Wang, L. Yang, Y. Lu, and T. Li, “Confidence guided
anomaly detection model for anti-concept drift in dynamic logs,” Journal
of Network and Computer Applications, vol. 162, p. 102659, 2020.

[4] X. Xie, Z. Jin, Q. Han, S. Huang, and T. Li, “A confidence-guided
anomaly detection approach jointly using multiple machine learning algo-
rithms,” in International Symposium on Cyberspace Safety and Security.
Springer, 2019, pp. 93–100.

[5] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in 2009 ninth
IEEE international conference on data mining. IEEE, 2009, pp. 149–
158.

[6] A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and S. Bhattacharya,
“Anomaly detection using program control flow graph mining from
execution logs,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 215–224.

[7] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 1285–1298.

[8] https://www.splunk.com/.
[9] T. Jia, L. Yang, P. Chen, Y. Li, F. Meng, and J. Xu, “Logsed: Anomaly

diagnosis through mining time-weighted control flow graph in logs,”
in 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD). IEEE, 2017, pp. 447–455.

267

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 18,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T02:11:13-0400
	Preflight Ticket Signature

